Plasma Physics and Nuclear Fusion Research (eBook)
708 Seiten
Elsevier Science (Verlag)
978-1-4832-1793-2 (ISBN)
Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book further tackles the pinch and tokamak confinement devices; the stellarator confinement devices; the mirror devices; and the next generation tokamaks. The text also encompasses the fusion reactor studies; heating; and diagnostics. Physicists and people involved in the study of plasma physics and nuclear fusion will find the book invaluable.
Front Cover 1
Plasma Physics and Nuclear Fusion Research 4
Copyright Page 5
Table of Contents 12
Contributors 6
Preface 8
Acknowledgements 10
Section I: INTRODUCTION 22
Chapter 1. Overview and Survey of Plasma Physics 24
1.1 HISTORY OF PLASMA PHYSICS 24
1.2 PLASMA DESCRIPTION 27
1.3 PLASMA PROPERTIES 30
1.4 PARTICULAR PLASMAS 38
1.5 CONCLUSIONS 52
REFERENCES 53
Chapter 2. Nuclear Fusion Research 54
2.1 MOTIVATION FOR FUSION RESEARCH 54
2.2 NUCLEAR PHYSICS OF FUSION 55
2.3 THE CONTAINMENT PROBLEM 57
2.4 MAGNETIC CONTAINMENT 59
2.5 REACTOR PROBLEMS 61
2.6 CONCLUSIONS 61
REFERENCES 62
ADDITIONAL GENERAL REFERENCES 62
Chapter 3. Introduction to Plasma Physics 64
3.1 INTRODUCTION 64
3.2 DEBYE SCREENING AND NEUTRALITY 65
3.3 COULOMB SCATTERING 66
3.4 PLASMA CONDUCTIVITY 67
3.5 ELECTRON RUNAWAY 68
3.6 HIGH FREQUENCY RESPONSE OF PLASMA 68
3.7 ELECTROMAGNETIC WAVE PROPAGATION IN A PLASMA 69
3.8 MAGNETIC PROPERTIES 70
3.9 EQUILIBRIUM IN A MAGNETIC FIELD 71
3.10 DIFFUSION ACROSS A MAGNETIC FIELD 72
3.11 WAVES 74
REFERENCES 74
GENERAL REFERENCES 74
Section II: THEORY 76
Chapter 4. Magnetohydrodynamics 78
4.1 INTRODUCTION 78
4.2 THE ELECTRODYNAMICS OF DEFORMABILE MEDIA 79
4.3 SOME CONSEQUENCES OF THE ELECTRODYNAMIC EQUATIONS 81
4.4 FLUID EQUATIONS 83
4.5 BOUNDARY CONDITIONS 85
4.6 MAGNETOSTATIC EQUATIONS AND MHD EQUILIBRIA 86
REFERENCES 90
Chapter 5. Particle Orbit Theory 92
5.1 INTRODUCTION 92
5.2 MOTION IN CONSTANT UNIFORM FIELDS 93
5.3 INHOMOGENEOUS AND TIME VARYING FIELDS 96
5.4 ADIABATIC INVARIANTS 103
REFERENCES 111
Chapter 6. Plasma Waves 112
6.1 INTRODUCTION 112
6.2 EQUATIONS OF MOTION 112
6.3 WAVES IN AN DEMAGNETIZED PLASMA 115
6.4 WAVES IN A COLD MAGNETIZED PLASMA 120
6.5 MAGNETOSONIC WAVES 133
6.6 WAVES ON PLASMA STREAMS 135
REFERENCES 138
Chapter 7. Kinetic Theory 140
7.1 INTRODUCTION 140
7.2 EQUATIONS FOR THE DISTRIBUTION FUNCTIONS 141
7.3 NEAR-EQUILIBRIUM PLASMA 146
7.4 VLASOV EQUATION 147
7.5 COLLISIONAL KINETIC EQUATIONS 148
7.6 FOKKER-PLANCK EQUATION 151
7.7 RELAXATION TIMES 156
7.8 LANDAU DAMPING 161
7.9 ION ACOUSTIC INSTABILITY 168
7.10 THE BERNSTEIN MODES 170
REFERENCES 174
Chapter 8. Transport Theory 176
8.1 GENERAL INFORMATION 176
8.2 CONTINUUM EQUATIONS FOR A TWO-FLUID PLASMA 178
8.3 QUALITATIVE DERIVATION OF TRANSPORT COEFFICIENTS 181
8.4 DERIVATION OF TRANSPORT COEFFICIENTS FROM KINETIC THEORY 187
8.5 THE ONSAGER PRINCIPLE 191
B.6 SINGLE-FLUID MODEL 192
8.7 TRANSPORT THEORY FOR TOROIDAL SYSTEMS 194
8.8 DRIFT KINETIC EQUATIONS 200
8.9 SOLUTION OF THE DRIFT KINETIC EQUATION 202
8.10 EXPERIMENTAL TESTS OF TRANSPORT THEORY 206
REFERENCES 210
Chapter 9. MHD Stability Theory 212
9.1 INTRODUCTION 212
9.2 RAYLEIGH-TAYLOR INSTABILITY 214
9.3 ENERGY PRINCIPLE 225
9.4 CYLINDRICAL PINCH 229
9.5 RESISTIVE INSTABILITIES 237
9.6 STABILITY OF TOKAMAKS 243
9.7 INSTABILITIES IN TOKAMAKS 250
BIBLIOGRAPHY 254
Chapter 10. Plasma Radiation 256
10.1 INTRODUCTION 256
10.2 THERMAL EQUILIBRIA 258
10.3 IONIZATION AND RECOMBINATION PROCESSES WHICH DETERMINE THE STATE OF IONIZATION OF IMPURITIES 260
10.4 THE STEADY-STATE IONIZATION BALANCE 273
10.5 TIME-DEPENDENT IONIZATION AND RECOMBINATION 276
10.6 EXCITATION AND SPECTRAL LINE INTENSITIES 276
10.7 RADIATION TRAPPING 289
10.8 THE RADIATED POWER LOSS FOR A PLASMA IN STEADYSTATE IONIZATION BALANCE 290
REFERENCES 296
Section III: ADVANCEDTHEORY 298
Chapter 11. Microinstabilities 300
11.1 INTRODUCTION 300
11.2 THE DRIFT WAVE DISPERSION EQUATION AND A PHYSICAL PICTURE OF A DRIFT WAVE 302
11.3 DISSIPATIVE MECHANISMS GIVING INSTABILITY 307
11.4 RADTAL LOCALIZATION AND STABILIZATION BY SHEAR 309
REFERENCES 312
Chapter 12. Plasma Turbulence 314
12.1 INTRODUCTION 314
12.2 QUASI-LINEAR THEORY 318
12.3 NONLINEAR THEORIES 320
REFERENCES 325
Chapter 13. Anomalous Transport Theory 326
13.1 INTRODUCTION 326
13.2 QUASILINEAR THEORY 327
13.3 UPPER LIMIT ON THE WAVE AMPLITUDE 329
13.4 ANALYTIC ESTIMATES OF THE SATURATION LEVEL 330
13.5 PHYSICAL PROCESSES DESCRIBED BY QUASILINEAR THEORY 332
13.6 DUPREE-TYPE THEORIES 333
13.7 EFFECT OF MAGNETIC FIELD FLUCTUATIONS 333
13.8 COMPARISON OF THEORY AND EXPERIMENT 335
13.9 1-D COMPUTATIONS 336
13.10 CONCLUSIONS 338
REFERENCES 339
Chapter 14. Nonlinear Laser Plasma Interaction Theory 340
14.1 INTRODUCTION 340
14.2 GENERAL DISCUSSION OF PARAMETRIC INSTABILITY 341
14.3 QUALITATIVE DESCRIPTION OF PARAMETRIC INSTABILITIES IN AN UNMAGNETISED PLASMA 343
14.4 QUANTITATIVE DESCRIPTION OF PARAMETRIC INSTABILITIES 347
14.5 INHOMOGENEOUS PLASMA 354
14.6 M0DULATI0NAL INSTABILITIES AND FOUR WAVE INTERACTIONS 356
14.7 FILAMENTATION 363
14.8 THE LANGMUIR MODULATION INSTABILITY AND LANGMUIR TURBULENCE 367
14.9 RESONANCE ABSORPTION 370
14.10 CONCLUSION 374
REFERENCES 374
ADDITIONAL GENERAL REFERENCES 375
Section IV: EXPERIMENTAL DEVICES 376
Chapter 15. Pinch and Tokamak Confinement Devices 378
15.1 INTRODUCTION 378
15.2 MAGNETIC CONFINEMENT 379
15.3 TOROIDAL CONFINEMENT SYSTEMS 379
15.4 STABILITY 383
15.5 TECHNOLOGY OF TOROIDAL CONFINEMENT SYSTEMS 386
15.6 PROGRESS IN TOKAMAK EXPERIMENTS 390
15.7 ADDITIONAL HEATING 394
15.8 PLASMA FUELLING 397
15.9 IMPURITY CONTROL 397
15.10 SCREW PINCHES AND BELT PINCHES 398
15.11 REVERSE FIELD PINCHES 399
15.12 FUTURE DEVICES 401
15.13 CONCLUSIONS 402
REFERENCES 403
Chapter 16. Stellarator Confinement Devices 406
16.1 BASIC BACKGROUND 406
16.2 MAGNETIC TOPOLOGY 407
16.3 STELLARATOR EQUILIBRIUM 409
16.4 STELLARATOR STABILITY 410
16.5 EXPERIMENTS –
410
16.6 EXPERIMENTS –
413
16.7 OTHER FORMS OF PLASMA PRODUCTION AND HEATING 415
16.8 REACTOR POSSIBILITIES 417
16.9 CONCLUSIONS 418
REFERENCES 419
Chapter 17. Mirror Devices 422
17.1 INTRODUCTION 422
17.2 MIRROR CONFINEMENT 423
17.3 MIRROR INSTABILITIES AND MINIMUM B 425
17.4 MICRO-INSTABILITIES 427
17.5 CLASSICAL DIFFUSION LOSSES 429
17.6 THE TANDEM CONCEPT 430
17.7 ON THE POSSIBILITY OF A MIRROR REACTOR 432
17.8 FURTHER READING 433
REFERENCES 434
Chapter 18. The Next Generation Tokamaks 436
18.1 INTRODUCTION 436
18.2 THE STATUS OF TOKAMAK RESEARCH 438
18.3 TOKAMAK SUBSYSTEMS
442
18.4 THE NEXT GENERATION 449
REFERENCE 452
Chapter 19. Fusion Reactor Studies 454
19.1 INTRODUCTION 454
19.2 TYPES OF REACTOR STUDIES 454
19.3 THE OBJECTIVES OF REACTOR STUDIES 456
19.4 DESCRIPTION OF REACTOR DESIGNS 457
19.5 ASSESSMENTS OF FUSION REACTORS 466
19.6 CONCLUSION 471
REFERENCES 472
Section V: HEATING AND DIAGNOSTICS 474
Chapter 20. Neutral Injection Plasma Heating 476
20.1 INTRODUCTION 476
20.2 NEUTRAL INJECTION HEATING 476
20.3 THE NEUTRAL INJECTION SYSTEM 482
20.4 RESULTS 494
20.5 SUMMARY AND CONCLUSIONS 494
REFERENCES 496
Chapter 21. The Theory of Radio Frequency Plasma Heating 498
21.1 INTRODUCTION 498
21.2 NON-OSCILLATORY AND LOW-FREQUENCY SCHEMES 498
21.3 HIGH-FREQUENCY WAVES –
500
21.4 SPECIFIC HEATING SCHEMES 506
21.5 CONCLUSIONS 518
REFERENCES 519
Chapter 22. Radio Frequency Plasma Heating Experiments 522
22.1 INTRODUCTION 522
22.2 TRANSIT TIME MAGNETIC PUMPING 524
22.3 HEATING IN THE ION CYCLOTRON RANGE OF FREQUENCIES 529
22.4 LOWER HYBRID RESONANCE HEATING 537
22.5 ELECTRON CYCLOTRON RESONANCE HEATING 546
22.6 RF CURRENT DRIVE 553
22.7 CONCLUSIONS 553
REFERENCES 554
Chapter 23. Plasma Diagnostics Using Lasers 556
23.1 INTRODUCTION 556
23.2 LASER INTERFEROMETRY FOR ELECTRON DENSITY MEASUREMENTS 557
23.3 THOMSON SCATTERING FOR ELECTRON TEMPERATURE, DENSITY AND ION TEMPERATURE MEASUREMENTS 561
REFERENCES 571
Chapter 24. X-ray and Particle Diagnostics 572
24.1 X-RAY CONTINUUM MEASUREMENTS 572
24.2 X-RAY PINHOLE TECHNIQUES 576
24.3 RUNAWAY ELECTRONS 581
24.4 NEUTRON DIAGNOSTIC METHODS 583
24.5 ION TEMPERATURE MEASUREMENTS USING CHARGE-EXCHANGE 585
REFERENCES 588
ADDITIONAL GENERAL REFERENCES 589
Section VI: FURTHER TOPICS 590
Chapter 25. Inertial Confinement 592
25.1 FUSION IN INERTIALLY CONFINED PLASMAS 592
25.2 HYDRODYNAMIC COMPRESSION 594
25.3 DEGENERACY 601
25.4 RAYLEIGH-TAYLOR INSTABILITY 601
25.5 ABLATION PRESSURE 603
25.6 ABLATION DRIVING MECHANISMS 605
25.7 LASER COMPRESSION 606
25.8 SPHERES AND SHELLS 608
25.9 LASER-PLASMA COUPLING 608
25.10 PROFILE MODIFICATION 609
25.11 FLUX LIMITATION 610
25.12 EFFECTS OF RAYLEIGH-TAYLOR INSTABILITY 612
25.13 LASER FUSION-EFFICIENCY CONSIDERATIONS 613
25.14 EXPLODING PUSHER TARGETS 614
25.15 ABLATIVE COMPRESSION 616
25.16 LASER CONSIDERATIONS 617
REFERENCES 618
Chapter 26. Charged Particle Beams 620
26.1 INTRODUCTION 620
26.2 CHARGED PARTICLE OPTICS 621
26.3 THE EMITTANCE CONCEPT 624
26.4 THE EFFECT OF SELF-FIELDS 626
26.5 CLASSES OF BEAM BEHAVIOUR 627
26.6 WAVES ON BEAMS, INTRODUCTORY REMARKS 628
26.7 STREAMING PLASMA 629
26.8 TWO OR MORE STREAMING PLASMAS 632
26.9 BEAMS OF FINITE CROSS SECTION 634
26.10 THE EFFECT OF ARBITRARY WALL IMPEDANCE 636
26.11 LANDAU DAMPING 637
26.12 COUPLED MODES 637
26.13 CONCLUSIONS 638
REFERENCES 639
Chapter 27. Astrophysical Plasmas 640
27.1 INTRODUCTION 640
27.2 DOUBLE EXTRAGALACTIC RADIOSOURCES 646
27.3 PULSARS 651
27.4 MAGNETIC FIELDS IN STARS 655
27.5 THE SOLAR PLASMA 658
27.6 CONCLUSION 661
REFERENCES 661
Chapter 28. Computational Plasma Physics 664
28.1 INTRODUCTORY IDEAS ON COMPUTER SIMULATIONS 664
28.2 EQUILIBRIA AND TRANSPORT 671
28.3 DYNAMICS OF A MAGNETIZED FLUID 681
28.4 PARTICLE METHODS AND PHASE SPACE 690
28.5 DISCUSSION 698
REFERENCES 700
Definitions 702
Units 704
Index 706
Erscheint lt. Verlag | 3.9.2013 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Analytische Chemie |
Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik | |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Naturwissenschaften ► Physik / Astronomie ► Plasmaphysik | |
Technik | |
ISBN-10 | 1-4832-1793-0 / 1483217930 |
ISBN-13 | 978-1-4832-1793-2 / 9781483217932 |
Haben Sie eine Frage zum Produkt? |
Größe: 81,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich