Advances in Organometallic Chemistry -

Advances in Organometallic Chemistry (eBook)

Pedro J. Perez (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
322 Seiten
Elsevier Science (Verlag)
978-0-12-801084-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
170,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book contains authoritative reviews regarding the field of Organometallic Chemistry, written by highly qualified experts within the area, and reviewed by other experts before publication. Because of this high standard, AOC is one of the most cited journals in both Organic and Inorganic Chemistry fields. - High quality of the articles - Expertise of authors - Careful editing that provides an easy-to-read material
This book contains authoritative reviews regarding the field of Organometallic Chemistry, written by highly qualified experts within the area, and reviewed by other experts before publication. Because of this high standard, AOC is one of the most cited journals in both Organic and Inorganic Chemistry fields. - High quality of the articles- Expertise of authors- Careful editing that provides an easy-to-read material

Front Cover 1
Advances in Organometallic Chemistry 4
Copyright 5
Contents 6
Contributors 8
Chapter One: Palladium-Mediated Organofluorine Chemistry 10
1. Introduction 10
2. CC Coupling Reactions of Fluorinated Reagents 12
2.1. Overview of catalytic CC coupling reactions of fluorinated derivatives 12
2.1.1. CC coupling of fluorinated alkyl derivatives 13
2.1.1.1. Radical reactions 14
2.1.1.2. Perfluoroalkyl groups in the Stille reaction 16
2.1.1.3. Introduction of fluorinated groups using the Negishi reaction 17
2.1.1.4. Introduction of fluorinated groups using the Suzuki reaction 18
2.1.1.5. Use of fluoroalkyl silanes as fluoroalkylating reagents 21
2.1.1.6. Other fluoroalkylating reagents: Fluoroalkyl copper 22
2.1.1.7. Allylic alkylation reactions 25
2.1.1.8. Catalysis through palladium mediated CH activation 27
2.1.1.9. Perfluoroalkylation of unsaturated molecules 29
2.1.2. CC coupling of fluorinated aryl derivatives 31
2.1.2.1. Heck reactions 31
2.1.2.2. Suzuki-Miyaura reactions 31
2.1.2.3. Stille reactions 33
2.1.2.4. Sonogashira reactions 33
2.1.3. CC coupling of fluorinated arenes 34
2.1.4. CC coupling of fluorinated alkenyls 37
2.2. The PdRF bond 40
2.2.1. PdAlkylF bonds 40
2.2.2. PdArF bonds 41
2.3. Elementary steps in organofluorine CC coupling palladium-catalyzed processes 44
2.3.1. Oxidative addition and related processes 45
2.3.1.1. Oxidative addition to Pd(0) compounds 45
2.3.1.2. Oxidation of Pd(II) compounds leading to organofluorine Pd(IV) derivatives 47
2.3.2. Transmetalation 49
2.3.2.1. The transmetalation step in the Stille reaction 50
2.3.2.2. Transmetalation equilibria between organogold and organopalladium complexes 54
2.3.2.3. The transmetalation step in the Negishi reaction 56
2.3.3. Reductive elimination 58
2.3.3.1. Reductive elimination from Pd(II) complexes 58
2.3.3.2. Reductive elimination from Pd(IV) complexes 62
2.3.4. 2,1-Insertion 63
2.3.5. 1,1-Insertion (migratory insertion) 68
3. CF Activation and Fluorination 70
3.1. Overview of catalytic CC and CX coupling reactions where a CF bond is cleaved 71
3.1.1. CC coupling reactions of fluorinated aryls 71
3.1.2. CC Coupling reactions of fluorinated alkenes 75
3.1.3. Allylic substitutions of a fluorine atom 75
3.1.4. Hydrodefluorination reactions 75
3.2. Overview of catalytic CF forming reactions 78
3.2.1. Pd-catalyzed fluorination with electrophilic fluorine sources 79
3.2.2. Pd-catalyzed fluorination with nucleophilic fluorine sources 83
3.3. The PdF bond 86
3.4. Oxidative addition of RF 90
3.5. ß-F and a-F elimination 94
3.6. Other activation routes for CF cleavage 95
3.7. Reductive elimination of RF 96
4. Conclusion 101
Acknowledgment 101
References 101
Chapter Two: Normal and Abnormal N-Heterocyclic Carbene Ligands: Similarities and Differences of Mesoionic C-Donor Complexes 120
1. Introduction and General Considerations 120
2. Ligand Nomenclature: Abnormal or Mesoionic Carbene Complexes? 124
3. Electronic Considerations 126
4. Reactivity of Complexes with Sterically Comparable Ligands 130
4.1. Imidazolylidene complexes 131
4.1.1. Structure and electronics of normal versus abnormal mesoionic imidazolylidene complexes 131
4.1.2. Comparative evaluation of imidazolylidene complexes in hydrogenation catalysis and related transformations 138
4.1.3. Comparative evaluation of imidazolylidene complexes in cross-coupling catalysis 144
4.2. N,X-Heterocyclic carbene complexes 146
4.3. Triazolylidene complexes 148
4.4. Pyridylidene complexes 150
4.4.1. Monodentate pyridylidene complexes 150
4.4.2. Polydentate pyridylidene complexes 155
4.4.3. Catalytic applications of pyridylidene complexes 156
5. Conclusions and Outlook 156
Acknowledgments 158
References 158
Chapter Three: Synthesis and Applications in Catalysis of Metal Complexes with Chelating Phosphinosulfonate Ligands 168
1. Introduction 169
2. Synthetic Routes to Achiral and Racemic Phosphine Sulfonic Acid Prochelates 170
2.1. Preparation of phosphinoalkylsulfonates 170
2.2. Preparation of symmetrical phosphinoarylsulfonic acids 172
2.3. Preparation of racemic P-stereogenic phosphinoarylsulfonic acids 175
2.4. Preparation of miscellaneous sulfonate prochelates 178
2.4.1. Polysulfonated o-phosphinoarylsulfonates 178
2.4.2. Phosphinoarylsulfonates 180
2.4.3. Racemic ferrocenylphosphinosulfonate 180
2.4.4. Diazaphospholidinobenzenesulfonates 180
2.4.5. Imidazolium sulfonate zwitterions 182
3. Preparation of Scalemic Sulfonate Prochelates 184
3.1. Phosphinoferrocenesulfonates 184
3.2. P-chiral phosphinobenzenesulfonates 185
3.3. Enantiopure phosphinoethanesulfonates 185
3.4. Atropoisomeric phosphinobenzenesulfonates 186
3.5. Enantiopure imidazoliniumbenzenesulfonates 187
4. Applications of Sulfonate Prochelates in Coordination Chemistry 187
4.1. Transition metal complexes bearing phosphinosulfonate ligand 187
4.1.1. Palladium complexes 189
4.1.1.1. Neutral [(PO)2Pd] complexes 189
4.1.1.2. Anionic [Pd(PO)R]- complexes 189
4.1.1.3. Neutral allylic [Pd(PO)] complexes 190
4.1.1.4. Formation of palladium(alkyl)(PO) complexes 190
4.1.2. Nickel complexes 194
4.1.3. Platinum complexes 196
4.1.4. Rhodium and iridium complexes 197
4.1.5. Ruthenium complexes 198
4.2. Transition metal complexes bearing NHC-sulfonate ligand 199
5. Applications in Molecular Catalysis 201
5.1. Ruthenium-catalyzed activation of allylic alcohols 201
5.2. Hydrogenation/hydrogen (auto)transfers 203
5.2.1. Iridium-catalyzed hydrogenation of alkenes 203
5.2.2. Ruthenium-catalyzed hydrogenation of ketones 204
5.2.3. C(3)-alkylation of saturated amines through hydrogen autotransfer 205
5.3. Rhodium-catalyzed hydroformylation 208
5.4. Copper-catalyzed conjugate addition 208
5.5. Copper-catalyzed asymmetric allylic alkylation 209
5.6. Miscellaneous reactions catalyzed by phoshinesulfonate metal complexes 211
6. Application of Metal-Phosphinosulfonate Chelate Complexes in Polymerization 213
6.1. Oligo- and polymerization of ethylene 213
6.2. Copolymerization of ethylene with polar monomers 215
6.3. Copolymerization of ethylene with carbon monoxide 216
6.4. Copolymerization of polar monomers with carbon monoxide 217
7. Recent Contributions 218
8. Conclusions and Outlook 218
Acknowledgments 219
References 219
Chapter Four: The Mannich Route to Amino-Functionalized [3]Ferrocenophanes 228
1. Introduction 228
2. Prolog: Synthesis of Ansa-Zirconocenes by the Mannich Reaction 230
3. [3]Ferrocenophane Synthesis by the Mannich Route 232
4. [3]Ferrocenophane Derived N/P and P/P Chelate Ligands 244
5. [3]Ferrocenophanes in Bio-Organometallic Chemistry 250
6. Frustrated Lewis Pair Chemistry at the [3]Ferrocenophane Framework 253
7. Some Conclusions 257
Acknowledgments 257
References 258
Chapter Five: Organometallic Intermediates of Gold Catalysis 270
1. Introduction 270
2. Organogold Intermediates 271
2.1. p-Complexes 271
2.1.1. Alkene gold complexes 271
2.1.2. Arene gold complexes 273
2.1.3. Allene gold complexes 275
2.1.4. Alkyne gold complexes 275
2.2. Vinylic organogold complexes 279
2.3. Alkylgold complexes 286
2.4. Gold hydrides 288
2.5. Gem-diaurated complexes and gold acetylides 289
2.6. Gold carbenoids 294
2.7. Gold(III) intermediates 297
3. Conclusions 298
References 299
Index 308

References


1 Kirsch P. Modern Fluoroorganic Chemistry. 2nd ed. Weinheim, Germany: Wiley-VCH; 2013.

2 Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev. 2008;37:320–330.

3 Liang T, Neumann CN, Ritter T. Introduction of fluorine and fluorine-containing functional groups. Angew Chem Int Ed Engl. 2013;52:8214–8264.

4 (a) Ma JA, Cahard D. Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. Chem Rev. 2008;108:PR1–PR43. (b) Ma JA, Cahard D. Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions. Chem Rev. 2004;104:6119–6146. (c) Nie J, Guo HC, Cahard D, Ma JA. Asymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substrates. Chem Rev. 2011;111:455–529.

5 Ojima I. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology. J Org Chem. 2013;78:6358–6383.

6 Torrens H. Carbon fluorine bond activation by platinum group metal complexes. Coord Chem Rev. 2005;249:1957–1985.

7 Amii H, Uneyama K. C-F bond activation in organic synthesis. Chem Rev. 2009;109:2119–2183.

8 McClinton MA, McClinton DA. Trifluoromethylations and related reactions in organic chemistry. Tetrahedron. 1992;48:6555–6666.

9 Umemoto T. Electrophilic perfluoroalkylating agents. Chem Rev. 1996;96:1757–1777.

10 Jin Z, Hammond GB, Xu B. Transition-metal-mediated fluorination, difluoromethylation, and trifluoromethylation. Aldrichim Acta. 2012;45:67–83.

11 Zhang C-P, Chen Q-Y, Guo Y, Xiao Y-C, Gu Y-C. Difluoromethylation and trifluoromethylation reagents derived from tetrafluoroethane-sultone: synthesis, reactivity and applications. Coord Chem Rev. 2014;261:28–72.

12 Murphy PM, Baldwin CS, Buck RC. Syntheses utilizing n-perfluoroalkyl iodides [RFI, CnF2n+1-I] 2000–2010. J Fluorine Chem. 2012;138:3–23.

13 Roy S, Gregg BT, Gribble GW, Le V-D, Roy S. Trifluoromethylation of aryl and heteroaryl halides. Tetrahedron. 2011;67:2161–2195.

14 Liu H, Gu Z, Jiang X. Direct trifluoromethylation of the C–H bond. Adv Synth Catal. 2013;355:617–626.

15 Sato K, Tarui A, Omote M, Ando A, Kumadaki I. Trifluoromethylation of organic compounds and related reactions. Synthesis. 2010;11:1865–1882.

16 Prakash GKS, Hu J. Selective fluoroalkylations with fluorinated sulfones, sulfoxides, and sulfides. Acc Chem Res. 2007;40:921–930.

17 Xu J, Liu X, Fu Y. Recent advance in transition-metal-mediated trifluoromethylation for the construction of C(sp3)-CF3 bonds. Tetrahedron Lett. 2014;55:585–594.

18 Ye Y, Sanford MS. Investigations into transition-metal-catalyzed arene trifluoromethylation reactions. Synlett. 2012;23:2005–2013.

19 Lundgren RJ, Stradiotto M. Transition-metal-catalyzed trifluoromethylation of aryl halides. Angew Chem Int Ed Engl. 2010;49:9322–9324.

20 Liu T, Shen Q. Progress in copper-mediated formation of trifluoromethylated arenes. Eur J Org Chem. 2012;6679–6687.

21 (a) García-Monforte MA, Alonso PJ, Forniés J, Menjón B. Dalton Trans. 2007;2010:3347–3359. (b) Usón R, Forniés J, Tomás M. Anionic perhaloaryl-palladium and -platinum complexes as sources of unusual homo- and hetero-nuclear compounds. J Organomet Chem. 1988;358:525–543. (c) Usón R, Forniés J. Organopalladium and platinum compounds with perhalophenyl ligands. Adv Organomet Chem. 1988;28:219–297.

22 García-Monforte MA, Martínez-Salvador S, Menjón B. The trifluoromethyl group in transition metal chemistry. Eur J Inorg Chem. 2012;4945–4966.

23 (a) Albéniz AC, Espinet P, López-Cimas O, Martín-Ruiz B. Dimeric palladium complexes with bridging aryl groups: when are they stable?. Chem Eur J. 2005;11:242–252. (b) Usón R, Forniés J, Tomás M, Casas JM, Navarro R. Synthesis and reactivity of binuclear homo-metallic or hetero-metallic complexes [NBu4]2[MM'(μ-C6F5)2(C6F5)4] (M = M′ = Pd or Pt, M = Pt, M′ = Pd) with bridging pentafluorophenyl groups. J Chem Soc Dalton Trans. 1989;2010:169–172.

24 Usón R, Forniés J, Falvello LR, et al. Synthesis and structure of two dinuclear anionic complexes, with Pt(III)-Pt(III) bonds and unprecedented (C6F4O)2 − or {C6F4(OR)2}2 − (R = Me, Et) quinone-like bridging ligands. J Am Chem Soc. 1994;116:7160–7165.

25 See for instance: For turnstile processes (a) J.A.CasaresP.EspinetDynamic behavior of [Pd(C6F5)2(SPPynPh3–n)] complexes: evidence for a turnstile mechanism in intramolecular exchange.Inorg Chem. 1997;3654285431 For isomerization reactions (b) A.L.CasadoJ.A.CasaresP.EspinetMechanism of the uncatalyzed dissociative cis–trans isomerization of bis(pentafluorophenyl)bis(tetrahydrothiophene): a refinement.Inorg Chem. 1998;3741544156 (c) A.C.Albe´nizA.L.CasadoP.EspinetAtropisomerization in cis-[Pd(2-C6BrF4)2L2] (L¼thioether): a dual mechanism involving ligand-dissociative and nondissociative competitive pathways.Inorg Chem. 1999;3825102515 For dissociative processes (d) J.A.CasaresS.CocoP.EspinetY.-S.LinObservation of a slow dissociative process in palladium(II) complexes.Organometallics. 1995;1430583067 (e) J.A.CasaresP.EspinetJ.M.Martı´nez-IlarduyaY.-S.LinKinetic study of the dynamic behavior of [M(C6F5)X(OPPynPh3–n)] (M ¼ Pd, Pt; X ¼ C6F5, halide; n ¼ 1,2,3): activation parameters for the restricted rotation about Palladium-Mediated Organofluorine Chemistry 93 the M-aryl bond, and for the Py associative exchange.Organometallics. 1997;16770779 (f) A.C.Albe´nizA.L.CasadoP.EspinetAtropisomerization in cis- [Pd(2-C6BrF4)2L2] (L ¼ Thioether): a dual mechanism involving ligand-dissociative and nondissociative competitive pathways.Inorg Chem. 1999;3825102515 For other fluxional processes (g) J.A.CasaresP.EspinetK.SoulanticaI.PascualA.G.OrpenP(CH2CH2Py)nPh3–n (Py¼2-pyridyl; n ¼ 1,2,3) as chelating and as binucleating ligands towards palladium.Inorg Chem. 1997;3652515256 (h) M.A.AlonsoJ.A.CasaresP.EspinetJ.M.Martı´nez-IlarduyaC.Pe´rez-BrisoThe 3,5 dichlorotrifluorophenyl ligand, a useful tool for the study of coordination modes and dynamic behavior of complexes of palladium and platinum.Eur J Inorg Chem. 199817451753 (i) M.C.Carrio´nA.GuerreroF.A.Jalo´n, et alFive different fluxional processes in polyfluorophenyl palladium(II) complexes with 2,4,6-tris(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine. The driving effect of the solvent.Inorg Chem. 2003;423885895

26 Casares JA, Espinet P, Salas G. Palladium catalysts for fast norbornene polymerization. A study by NMR and calorimetric methods. Organometallics. 2008;27(15):3761–3769.

27 Espinet P, Albéniz AC, Casares JA, Martínez-Ilarduya JM. 19F NMR in organometallic chemistry: applications of fluorinated aryls. Coord Chem Rev. 2008;252:2180–2206.

28 Högermeier J, Reissig HU. Nine times fluoride can be good for your syntheses. Not just cheaper: nonafluorobutanesulfonates as intermediates for transition metal-catalyzed reactions. Adv Synth Catal. 2009;351:2747–2763.

29 Lechel T, Dash J, Hommes P, Lentz D, Reissig HU. Three-component synthesis of perfluoroalkyl- or perfluoroaryl-substituted 4-hydroxypyridine derivatives and their palladium-catalyzed coupling reactions. J Org Chem. 2010;75:726–732.

30 Pan Y, Ruhland B, Holmes CP. Use of a perfluoroalkylsulfonyl (PFS) linker in a “traceless” synthesis of biaryls through Suzuki cleavage. Angew Chem Int Ed Engl. 2001;40:4488–4491.

31 Gerfaud T, Neuville L, Zhu J. Palladium-catalyzed annulation of acyloximes with arynes (or alkynes): synthesis of phenanthridines and isoquinolines. Angew Chem Int Ed Engl. 2009;48:572–577.

32 Chen M-W, Duan Y, Chen Q-A, Wang D-S, Yu C-B, Zhou Y-G. Enantioselective Pd-catalyzed hydrogenation of fluorinated imines: facile access to chiral fluorinated amines. Org Lett. 2010;12(21):2010.

33 (a) Huang YZ, Zhou QL. Studies on the Pd catalyzed reaction of perfluoroalkyl and polyfluoroalkyl iodides wits tertiary amines. Tetrahedron Lett. 1986;27:2397–2400. (b) Huang Y-Z, Zhou QL. Nickel-, palladium-, and platinum-catalyzed reactions of perfluoro- and polyfluoroalkyl iodides with tertiary amines. J Org Chem. 1987;52:3552–3558.

34 Ishihara T, Kuroboshi M, Okada Y. New efficient palladium-catalyzed perfluoroalkylation of...

Erscheint lt. Verlag 25.9.2014
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Chemie Organische Chemie
Technik
ISBN-10 0-12-801084-3 / 0128010843
ISBN-13 978-0-12-801084-6 / 9780128010846
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 23,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 21,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95