Statistical Mechanics of Neural Networks
Springer Berlin (Verlag)
978-3-662-13785-7 (ISBN)
These articles are an excellent introduction for both researchers and students to the applications of the theory of neural networks to statistical mechanics, computer science, and biophysics. Mathematical models and their applications are presented.
On the statistical-mechanical formulation of neural networks.- Model neurons: From Hodgkin-Huxley to hopfield.- Statistical mechanics for networks of analog neurons.- Properties of neural networks with multi-state neurons.- Adaptive recurrent neural networks and dynamic stability.- Neuronal oscillators: Experiments and models.- Neuronal networks in the hippocampus involved in memory.- Basins of attraction and spurious states in neural networks.- Tailoring the performance of attractor neural networks.- Learning and optimization.- Statistical dynamics of learning.- Learning and retrieving marked patterns.- Learning algorithm for binary synapses.- Statistical mechanics of the perceptron with maximal stability.- Simulation and hardware implementation of competitive learning neural networks.- Learning in multilayer networks: A geometric computational approach.- Storage capacity of diluted neural networks.- Dynamics and storage capacity of neural networks with sign-constrained weights.- The neural basis of the locomotion of nematodes.- Reversibility in neural processing systems.- Lyapunov functional for neural networks with delayed interactions and statistical mechanics of temporal associations.- Semi-local signal processing in the visual system.- Statistical mechanics and error-correcting codes.- Synergetic computers - An alternative to neurocomputers.- Dynamics of the Kohonen map.- Equivalence between connectionist classifiers and logical classifiers.- On Potts-glass neural networks with biased patterns.- Ising-spin neural networks with spatial structure.- Kinetically disordered lattice systems.- A programming system for implementing neural nets.- An auto-augmenting neural network architecture for diagnostic reasoning.- Formal integrators and neural networks.- Disorderedmodels of acquired dyslexia.- Higher order memories in optimally structured neural networks.- Random Boolean networks for autoassociative memory: Optimization and sequential learning.
Erscheint lt. Verlag | 23.8.2014 |
---|---|
Reihe/Serie | Lecture Notes in Physics |
Zusatzinfo | VI, 477 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 826 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Thermodynamik |
Schlagworte | Behavior • Dynamische Stabilität • learning • Lernvorgänge • Neural networks • Neuronale Netze |
ISBN-10 | 3-662-13785-2 / 3662137852 |
ISBN-13 | 978-3-662-13785-7 / 9783662137857 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich