Advances in Planar Lipid Bilayers and Liposomes

Advances in Planar Lipid Bilayers and Liposomes (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
238 Seiten
Elsevier Science (Verlag)
978-0-12-419959-0 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
175,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Although the origin and the basic meaning of the terms 'planar lipid bilayers' and 'liposome' have not changed during the years, the present advances in the scientific, technological, biomedical and consumer product fields are remarkable. Ever since its launch the 'Adances in Planar Lipid Bilayers and Liposomes' (APLBL) has provided a global platform for a community of researchers having very broad scientific interests in theoretical, experimental and simulation studies on lipid and cell membrane micro and nanostructures. Ranging from artificial lipid membranes to cell membranes, controlled release of functional molecules, drug delivery to cancer cells, pharmaceutical formulations to food products, the applications are simply enormous. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.


Many ideas proposed in lipid nanoscience are frontier and futuristic, although some have immediate technological applications. The core scientific principles of lipid nanoscience and applications, however, are grounded in physics and chemistry. In last three decades the studies of polymorphism of lipid micro and nanostructures have gone through a major revolution concerning its understanding and evolution of new equilibrium and non-equilibrium structures of various length scales. Novel applications of the lipid micro and nanostructures are progressing rapidly among numerous disciplines. The APLBL book series gives a survey on recent theoretical as well as experimental results on lipid micro and nanonanostructures. In addition, the potential use of the basic knowledge in applications like clinically relevant diagnostic and therapeutic procedures, biotechnology, pharmaceutical engineering and food products is presented.


Although the origin and the basic meaning of the terms "e;planar lipid bilayers"e; and "e;liposome"e; have not changed during the years, the present advances in the scientific, technological, biomedical and consumer product fields are remarkable. Ever since its launch the "e;Advances in Planar Lipid Bilayers and Liposomes' (APLBL) has provided a global platform for a community of researchers having very broad scientific interests in theoretical, experimental and simulation studies on lipid and cell membrane micro and nanostructures. Ranging from artificial lipid membranes to cell membranes, controlled release of functional molecules, drug delivery to cancer cells, pharmaceutical formulations to food products, the applications are simply enormous. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers. Gives a survey on recent theoretical as well as experimental results on lipid micro and nanonanostructures In addition, the potential use of the basic knowledge in applications like clinically relevant diagnostic and therapeutic procedures, biotechnology, pharmaceutical engineering and food products is presented

Front Cover 1
Advances in Planar Lipid Bilayers and Liposomes 4
Copyright 5
Contents 6
Contributors 10
Preface 12
Chapter One: Biomimetic Membrane Supported at a Metal Electrode Surface: A Molecular View 14
1. Introduction 15
2. sBLM Preparation Methods 16
2.1. Vesicle fusion 16
2.2. Langmuir-Blodgett and Langmuir-Schaefer deposition 21
3. Potential Drop Across the Membrane and an Estimate of the Electric Field Acting on the Membrane 23
4. Effect of the Potential Applied to the Gold Electrode on the Membrane Stability: AFM, NR, and Surface-Enhanced Infrared ... 27
5. Imaging Aggregation of Antibiotic Peptides in a Lipid Membrane 40
6. Potential-Controlled Changes in the Orientation and Conformation of Peptides and Peripheral Proteins: IR Studies of Gra ... 47
7. Summary and Conclusions 54
Acknowledgment 56
References 56
Chapter Two: Lipid Monolayers at the Air-Water Interface: A Tool for Understanding Electrostatic Interactions and Rheology ... 64
1. Introduction 65
2. Experimental Approaches on Monolayers 65
3. Phase Diagrams: Two-Phase Regions 70
4. Distribution of the Phases in the Plane of the Monolayer 74
5. In-Plane Interactions and Consequences on Film Effective Rheology 78
6. Comparison Between Different Model Membranes 83
7. Summary 85
Acknowledgments 86
References 86
Chapter Three: Langmuir-Blodgett Approach to Investigate Antimicrobial Peptide-Membrane Interactions 96
1. Introduction 96
2. Target Membrane Architecture 98
3. The Role of Phospholipids 100
4. Lipid Monolayers 103
5. Effect of Phospholipid Packing Characteristics and Lipid Phase Transitions on Membrane Stability 108
6. Visualization of Lipid Films 114
7. Conclusion 115
References 116
Chapter Four: Divalent Metal Cations in DNA-Phospholipid Binding 124
1. Introduction 125
2. DNA-Phospholipid-Divalent Metal Cation Interaction 126
3. Divalent Metal Cations as a Mediator of DNA-Neutral Phospholipid Bilayer Binding 128
3.1. DNA condensation 128
3.2. DNA thermal stability 131
4. The Structural Variety of DNA-PC-Me2+ Aggregates 132
4.1. X-ray diffraction on DNA-DPPC-Me2+ aggregates: Effect of temperature 132
4.2. Structural polymorphism of DNA-PC-Me2+ aggregates 135
4.3. DNA-DPPC-Zn2+ aggregates 141
5. Conclusion 142
Acknowledgments 143
References 144
Chapter Five: Solid-Like Domains in Mixed Lipid Bilayers: Effect of Membrane Lamellarity and Transition Pathway 150
1. Introduction 151
2. Materials and Methods 152
2.1. Preparation of vesicles 152
2.2. Optical microscopy 153
2.3. Wide-angle X-ray scattering 153
2.4. Differential scanning calorimetry 153
3. Results and Discussion 154
3.1. Phase behavior: Transition temperatures and structures 154
3.2. Shape of solid-like domains 157
3.2.1. Effect of transition pathway 161
3.2.2. Effect of membrane lamellarity 163
4. Summary and Outlook 164
Acknowledgments 165
References 165
Chapter Six: Hexagonal Phase Formation in Oriented DPPC-Melittin Samples: A Small-Angle X-ray Diffraction Study 168
1. Introduction 169
2. Materials and Methods 170
3. Results and Discussion 171
3.1. Characterization of the oriented DPPC-melittin system 171
3.2. Is the hexagonal phase originating from mismatch? 178
Acknowledgment 180
References 180
Chapter Seven: Probing the Self-Assembly of Unilamellar Vesicles Using Time-Resolved SAXS 184
1. Introduction 185
2. Experimental Method 187
2.1. Triggering and synchronization 187
2.2. Stopped-flow device calibration 189
2.3. Time-resolved SAXS 191
2.4. Data analysis 193
3. SAXS Analysis of Unilamellar Vesicles 195
3.1. Modeling of SAXS from unilamellar vesicles 196
3.2. Radiation damage 197
3.3. Self-assembly of unilamellar vesicles 199
3.3.1. Vesicle formation at higher concentration range 201
3.3.2. Mechanism for vesicle formation 202
3.3.3. Vesicle formation at lower concentration range 203
4. Summary and Outlook 206
Acknowledgments 207
References 208
Chapter Eight: Defects in Planar Cell Polarity of Epithelium: What Can We Learn from Liquid Crystals? 210
1. Introduction 211
2. Liquid Crystals 213
2.1. Mesoscopic modeling 215
2.2. Topological defects 217
3. Principles of Pattern Formation in Epithelial Tissues 218
3.1. Mathematical model 219
3.2. Time development of PCP patterns 220
3.3. Defects in PCP patterns 221
3.4. Quantification of order in PCP patterns 221
4. Results 222
4.1. Behavior of the model 222
4.2. Time evolution of PCP patterns and order quantification 223
4.3. Defects in PCP tissues 225
5. Discussion 227
References 228
Index 232

Chapter Two

Lipid Monolayers at the Air–Water Interface


A Tool for Understanding Electrostatic Interactions and Rheology in Biomembranes


Natalia Wilke1    Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Dpto. de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
1 Corresponding author: email address: wilke@mail.fcq.unc.edu.ar, natiwilke@gmail.com

Abstract


Monomolecular films of surfactants at the air–water interface are easy to prepare and handle, and enable a broad variety of techniques to be used. As in other model systems mimicking membranes, two phases are observed in several experimental conditions. This chapter compares the results found using this model membrane with other models and describes some of the techniques applicable to lipid monolayers. The factors underlying their texture when two phases coexist are summarized, with special attention to line tension, an important parameter in both nucleation and growth, as well as the final domain shape. Finally, the effects of the presence of two phases on the observed mechanical properties of the film (elastic compressibility and shear viscosity) are detailed.

Keywords

Models for membranes

Diffusion in membranes

Membrane potential

Lipid domains

Compressibility

Brewster angle microscopy

Single-particle tracking

1 Introduction


When amphiphiles are dissolved in an organic solvent and deposited on a water surface, the solution spreads rapidly to occupy the available area. While the solvent evaporates, the surfactant orientates to minimize contact of its nonpolar regions with water, but maximizes the water contact of its polar region, resulting in a one-molecule-thick surfactant film named “Langmuir monolayer.” These self-structured thin films have been the subject of study for many decades from a fundamental point of view in the fields of biophysics and biology as model biomembranes [17] and also as bottom-up 2D-patterning of molecularly thin films for different uses [814].

Langmuir monolayers are extremely valuable models for membranes [2,6,7,15,16] since experiments can easily be performed in which the molecular area, surface pressure, temperature, and chemical nature of the subphase are varied, and by this means, a broad set of thermodynamic parameters that characterize the monolayer can be accurately determined [1,17,18]. Although transmembrane processes cannot be studied in monolayers, this system is well suited for studying lateral mixing and structuring mediated by a variety of lipids and proteins which constitute biomembranes [5,1923]. Using this model membrane, a broad spectrum of techniques can be applied, some of which are detailed in Section 2. These lipid films also enable the diffusing species to be followed over a relatively large area and for a long time. Furthermore, the environment of such molecules can be controlled and also varied in a controlled manner (see Section 5).

All of this makes Langmuir lipid monolayers a convenient system for analyzing the influence of domains on the mechanical properties of membranes. The results found using Langmuir monolayers and other model membranes are similar in some cases but not in others, raising the interesting question of which model system is more suitable, the answer to which may depend on the parameter under study (see Section 6).

2 Experimental Approaches on Monolayers


Once Langmuir monolayers are formed, these films can be compressed while the area of the interface and the surface tension are determined, which is usually performed using a Wilhelmy plate made of platinum or paper. The surface pressure “π” can then be calculated as the surface tension of the bare interface minus that of the interface modified by the lipid layer, with the plots of π as a function of the mean molecular area “MMA” (interface area divided by the number of molecules at the interface) being referred to as “compression isotherms.” These experiments have been detailed elsewhere (see, e.g., Refs. [1,4,6]). For most lipid monolayers, the slope of the compression isotherm indicates the film's response under expansion or compression since shear can be neglected [24]. However, for some protein monolayers [13,25] and very cohesive lipids [26,27], the slope of the isotherm depends on the position of the sensor (a rectangular Wilhelmy plate) since the usual compression mode is asymmetric [28] (see Fig. 2.1), and thus the mechanical perturbation made in the film is both a compression–expansion and a shape perturbation. In the case of highly cohesive films, the response under the asymmetric perturbation will be affected by both the shear (G*) and the compressibility (E*) moduli, according to the following equations [28]:

*+G*=A0∂π∥∂A

  (2.1)

*-G*=A0∂π⊥∂A

  (2.2)

where π|| and π⊥ refer to the surface pressure determined with the sensor positioned parallel or perpendicular to the barriers, respectively (see Fig. 2.1). In turn, G* and E* can be expressed as:

*ω=G′ω+iG″ω=G′ω+iωηsω

  (2.3)

*ω=E′ω+iE″ω=E′ω+iωηdω

  (2.4)

Figure 2.1 Left: Scheme of a typical experiment with two moving barriers. The two positions of the sensor relative to the movement of the barriers are represented. Right: The area of the film is perturbed sinusoidally, and the response is determined with the sensor at the different positions. In this example, the response shows a nonzero shear behavior, since the amplitudes detected with the sensor at different positions are different. The film is viscoelastic and not purely elastic, since the maximum compression (minimum area) is not synchronized with the maximum surface pressure (see vertical line).

Both parameters (G* and E*) are complex numbers with a real (elastic response) and an imaginary (viscous response) part, as is clear in Eqs. (2.3) and (2.4). The imaginary parts arise from the fact that the compression speed is finite, so there may be friction resisting the compression flow, and the resistance is characterized by the compression (dilatational) viscosity, ηd. On the other hand, the shear elastic viscosity, ηs, is the ratio between the shear stress and the rate of shear. In order to obtain each component of G*and E*, a sinusoidal perturbation in the film area may be performed with a frequency ω [25]. An instantaneous response is characteristic of an elastic material, whereas a retarded response indicates viscoelasticity.

For most lipids, however, shear can be neglected and the elastic compressibility can be directly obtained by the elastic compressibility modulus ɛ = − MMA (∂π/∂MMA). For lipid molecules with high intermolecular cohesion, strong lipid–lipid attractions are present within molecules that form the monolayer, and the resulting film has a high ɛ value, in the order of 102 mN/m (these are named “liquid-condensed”) or higher (named “solid”) [18]. In contrast, when lipids with low intermolecular interactions are spread at the air–water interface, softer films are formed (compressibility modulus from 101 to 102 mN/m), named “liquid-expanded” monolayers [18]. For intermediate interactions, phase transitions induced by compression can be observed. The phase state can also be modulated by temperature like any 3D-phase state: an increase in temperature decreases the surface pressure of the phase transition from an expanded to a denser phase state.

The phase transitions in pure lipid monolayers are first order, since two phases can be detected in the monolayer using different techniques. According to the Gibbs phase rule when applied to 2D systems by Crisp [1], lateral pressure should remain constant during the whole transition of monolayers composed of a pure lipid, and therefore, the compressibility modulus should be zero at equilibrium. However, during the phase transition of pure lipids, the isotherm generally shows a nonzero but low slope (see, e.g., Fig. 2.2A, gray line). Observation of this region of the isotherm (normally called “plateau”) has been reported frequently and studied from different points of view. The simplest explanation given for the lack of constancy of surface pressure during the phase transition is related to the presence of impurities...

Erscheint lt. Verlag 18.7.2014
Mitarbeit Herausgeber (Serie): Ales Iglic, Chandrashekhar V. Kulkarni
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik
ISBN-10 0-12-419959-3 / 0124199593
ISBN-13 978-0-12-419959-0 / 9780124199590
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 13,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 14,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99