Science of Synthesis Knowledge Updates 2013 Vol. 1 (eBook)

eBook Download: EPUB
2014 | 1. Auflage
542 Seiten
Thieme (Verlag)
978-3-13-178891-7 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2013 Vol. 1 -
Systemvoraussetzungen
2.799,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<HTML> <HEAD> <META NAME='GENERATOR' Content='Microsoft DHTML Editing Control'> <TITLE></TITLE> </HEAD> <BODY> <P><em>Science of Synthesis</em> is a reference work for preparative methods in synthetic chemistry. Its product-based classification system enables chemists to easily find solutions to their synthetic problems.</P> <P>Key Features:</P> <UL><li>Critical selection of reliable synthetic methods, saving the researcher the time required to find procedures in the primary literature.<li>Expertise provided by leading chemists.<li>Detailed experimental procedures.<li>The information is highly organized in a logical format to allow easy access to the relevant information.</li></UL> <P>The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology. </P> </BODY> </HTML>

Science of Synthesis: Knowledge Updates 2013/1 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 14
Table of Contents 16
Volume 5: Compounds of Group 14 (Ge, Sn, Pb) 30
5.2 Product Class 2: Tin Compounds 30
5.2.1 Product Subclass 1: Tin Hydrides 30
Synthesis of Product Subclass 1 32
5.2.1.1 Method 1: Reduction of Tin Halides 32
5.2.1.1.1 Variation 1: Reduction of Tin Halides with Lithium Aluminum Hydride 32
5.2.1.1.2 Variation 2: Reduction of Tin Halides with Sodium Borohydride 34
5.2.1.2 Method 2: Synthesis from Organotin Oxides, Alkoxides, or Amides by Reduction 35
5.2.1.3 Method 3: Synthesis from Organotin Lithium, Sodium, Potassium, or Magnesium Compounds by Reactions with Electrophiles 36
Applications of Product Subclass 1 in Organic Synthesis 37
5.2.1.4 Tin-Mediated Radical Chain Reactions Not Involving Rearrangement of Intermediate Radicals 37
5.2.1.4.1 Method 1: Reduction of Carbon--Heteroatom Bonds 41
5.2.1.4.1.1 Variation 1: Reduction of Carbon--Halogen Bonds 41
5.2.1.4.1.2 Variation 2: Reduction of C--O Bonds 45
5.2.1.4.1.3 Variation 3: Reduction of C--N Bonds 48
5.2.1.4.2 Method 2: Formation of C--C Bonds by Radical Additions to Alkenes 50
5.2.1.4.2.1 Variation 1: Formation of C--C Bonds by Intermolecular Reactions with Alkenes 51
5.2.1.4.2.2 Variation 2: Formation of C--C Bonds by Intramolecular Addition of Carbon Radicals to Double Bonds 55
5.2.1.4.3 Method 3: Formation of C--N Bonds by Reactions of Nitrogen-Centered Radicals 68
5.2.1.5 Tin-Mediated Radical Reactions That Proceed with Rearrangement of Intermediate Radicals 72
5.2.1.5.1 Method 1: Radical Reactions That Proceed with Opening of Small Rings 72
5.2.1.5.2 Method 2: Radical Reactions That Proceed with 1,2- and 1,4-Group Transfer 75
5.2.1.5.3 Method 3: Radical Translocation through Intramolecular Hydrogen Abstraction 80
5.2.1.6 Hydrostannylation 84
5.2.1.6.1 Method 1: Hydrostannylation of Alkynes 84
5.2.1.6.1.1 Variation 1: Radical Hydrostannylation of Terminal Alkynes 84
5.2.1.6.1.2 Variation 2: Transition-Metal-Catalyzed Hydrostannylation of Terminal Alkynes 86
5.2.1.6.1.3 Variation 3: Palladium-Catalyzed Sequential Hydrostannylation and Stille Cross Coupling of Terminal Alkynes 89
5.2.1.6.1.4 Variation 4: Radical Hydrostannylation of Internal Alkynes 90
5.2.1.6.1.5 Variation 5: Transition-Metal-Catalyzed Hydrostannylation of Internal Alkynes 92
5.2.1.6.2 Method 2: Hydrostannylation of C==C, C==O, and C==N Bonds 96
5.2.1.6.2.1 Variation 1: Hydrostannylation of Alkenes 96
5.2.1.6.2.2 Variation 2: Addition Reactions of Tin Hydrides to C==O Bonds 99
5.2.1.6.2.3 Variation 3: Additions of Tin Hydrides to C==N Bonds 101
Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be···Ba) 108
7.6 Product Class 6: Magnesium Compounds 108
7.6.11.21 Grignard Reagents with Transition Metals 108
7.6.11.21.1 Method 1: Mercury-Catalyzed Addition of Grignard Reagents to Aldehydes 109
7.6.11.21.2 Method 2: Nickel-Catalyzed Cross Coupling of Grignard Reagents 110
7.6.11.21.2.1 Variation 1: Reaction with Alkyl Halides 110
7.6.11.21.2.2 Variation 2: Reaction with Organosulfur Compounds 111
7.6.11.21.2.3 Variation 3: Reaction with Aryl Fluorides under Microwave Irradiation 113
7.6.11.21.3 Method 3: Palladium-Catalyzed Cross Coupling of Grignard Reagents 114
7.6.11.21.3.1 Variation 1: Reaction with Aryl Halides 114
7.6.11.21.3.2 Variation 2: Reaction with Aryl Fluorides under Microwave Irradiation 115
7.6.11.21.3.3 Variation 3: Reaction with Aryl Halides Promoted by Zinc(II) Bromide 116
7.6.11.21.3.4 Variation 4: Reaction with Hetaryl Sulfonates 118
7.6.11.21.4 Method 4: Copper-Catalyzed Reactions of Grignard Reagents 119
7.6.11.21.4.1 Variation 1: Cross Coupling with Hetaryl Halides 119
7.6.11.21.4.2 Variation 2: Carbometalation of Propargylic Alcohols 120
7.6.11.21.4.3 Variation 3: Reaction with a,ß-Unsaturated Carbonyl Compounds 122
7.6.11.21.4.4 Variation 4: Allylic Substitution Reactions 123
7.6.11.21.4.5 Variation 5: Ring Opening of Chiral Epoxides 125
7.6.11.21.4.6 Variation 6: Cross Coupling with Allylic Chlorides 127
7.6.11.21.5 Method 5: Iron-Catalyzed Cross Coupling of Grignard Reagents 128
7.6.11.21.5.1 Variation 1: Reaction with Aryl Halides 128
7.6.11.21.5.2 Variation 2: Reaction with Alkynyloxiranes 130
7.6.11.21.5.3 Variation 3: Reaction with Primary and Secondary Alkyl Halides 131
7.6.11.21.6 Method 6: Iron-Catalyzed Reduction of Organic Halides 134
7.6.11.21.7 Method 7: Iridium-Catalyzed Allylic Substitution Reactions 135
7.6.11.21.8 Method 8: Titanium-Catalyzed Cross Coupling of Grignard Reagents 136
7.6.11.21.8.1 Variation 1: Reaction with Aryl Fluorides 136
7.6.11.21.8.2 Variation 2: Reaction with O,N-Acetals 137
7.6.11.21.9 Method 9: Zirconium-Catalyzed Reaction with Alkynes 138
7.7 Product Class 7: Calcium Compounds 142
7.7.1 Product Subclass 1: Organocalcium Hydrides 142
Synthesis of Product Subclass 1 142
7.7.1.1 Method 1: Synthesis of Phenylcalcium Hydride from Calcium Metal 142
Applications of Product Subclass 1 in Organic Synthesis 143
7.7.1.2 Method 2: Reaction of Phenylcalcium Hydride with Electrophiles 143
7.7.2 Product Subclass 2: Heterobimetallic Calcium Compounds 144
Synthesis of Product Subclass 2 144
7.7.2.1 Method 1: Synthesis of Heterobimetallic Calcium Compounds with Alkaline Earth and Transition Metals 144
7.7.2.2 Method 2: Synthesis of Calcium Borates 145
Applications of Product Subclass 2 in Organic Synthesis 146
7.7.2.3 Method 3: Intramolecular Hydroamination of Amino-Substituted Alkenes 146
7.7.2.4 Method 4: Baeyer–Villiger Oxidation of Ketones 147
7.7.3 Product Subclass 3: Organocalcium Halides 150
Synthesis of Product Subclass 3 150
7.7.3.1 Method 1: Synthesis of Methylcalcium Iodide from Calcium Metal 150
Applications of Product Subclass 3 in Organic Synthesis 151
7.7.3.2 Method 2: Reaction of Organocalcium Halides with Electrophiles 151
7.7.4 Product Subclass 4: Calcium Alkoxides 152
Synthesis of Product Subclass 4 152
7.7.4.1 Method 1: Synthesis of Calcium Alkoxides from Calcium Metal 152
7.7.4.2 Method 2: Synthesis of Calcium Alkoxides from Calcium(II) Compounds 153
Applications of Product Subclass 4 in Organic Synthesis 154
7.7.4.3 Method 3: Asymmetric Baylis–Hillman Reactions 154
7.7.4.4 Method 4: Asymmetric Aldol Reactions 154
7.7.4.5 Method 5: Asymmetric 1,4-Addition Reactions 155
7.7.4.6 Method 6: Asymmetric Epoxidation Reactions 156
7.7.5 Product Subclass 5: Calcium Phosphates 157
Synthesis of Product Subclass 5 157
7.7.5.1 Method 1: Synthesis of Chiral Calcium Phosphates from Calcium(II) Compounds 157
Applications of Product Subclass 5 in Organic Synthesis 159
7.7.5.2 Method 2: Asymmetric Mannich Reactions of Aldimines 159
7.7.5.2.1 Variation 1: Reaction with Acyclic Nucleophiles 159
7.7.5.2.2 Variation 2: Reaction with Cyclic Nucleophiles 161
7.7.5.3 Method 3: Asymmetric Reactions of Indolin-2-ones 162
7.7.5.3.1 Variation 1: Oxidation of 3-Arylindolin-2-ones 162
7.7.5.3.2 Variation 2: Chlorination of 3-Arylindolin-2-ones 163
7.7.5.4 Method 4: Asymmetric Amination of Enamines 164
7.7.5.5 Method 5: Asymmetric Carbonyl-Ene Reactions 167
7.7.5.6 Method 6: Asymmetric Friedel–Crafts Alkylation 168
7.7.6 Product Subclass 6: Calcium Amides 169
Synthesis of Product Subclass 6 169
7.7.6.1 Method 1: Synthesis of Calcium–Bis(4,5-dihydrooxazole) Complexes from Calcium(II) Compounds 169
Applications of Product Subclass 6 in Organic Synthesis 170
7.7.6.2 Method 2: Asymmetric 1,4-Addition Reactions with a,ß-Unsaturated Carbonyl Derivatives 170
7.7.6.3 Method 3: Asymmetric [3 + 2]-Cycloaddition Reactions 172
7.7.6.4 Method 4: Asymmetric 1,4-Addition/Protonation Reactions 173
7.7.6.5 Method 5: Asymmetric 1,4-Addition Reactions of Oxazolones 175
7.7.6.6 Method 6: Asymmetric 1,4-Addition Reactions to Nitroalkenes 175
7.7.6.7 Method 7: Asymmetric Hydroamination Reactions 177
7.7.6.8 Method 8: Friedel–Crafts Addition to Arenes 178
7.7.7 Product Subclass 7: Diorganocalcium Compounds 179
Synthesis of Product Subclass 7 179
7.7.7.1 Method 1: Synthesis of Bis(phenylethynyl)calcium from Calcium Metal 179
7.7.7.2 Method 2: Synthesis of Diallylcalcium from Calcium Iodide 180
7.7.7.3 Method 3: Synthesis of Calcium Metallocenes 181
7.7.7.4 Method 4: Synthesis of Dibenzylcalcium Complexes 181
Applications of Product Subclass 7 in Organic Synthesis 182
7.7.7.5 Method 5: Hydrogenation of Alkenes 182
7.7.7.6 Method 6: Hydrosilylation of Ketones 183
Volume 9: Fully Unsaturated Small Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom 186
9.13 Product Class 13: 1H-Pyrroles 186
9.13.5 1H-Pyrroles 186
9.13.5.1 Synthesis by Ring-Closure Reactions 187
9.13.5.1.1 By Formation of Two N--C and Two C--C Bonds 187
9.13.5.1.1.1 Fragments N, C--C, and Two C Fragments 187
9.13.5.1.1.1.1 Method 1: Reaction of Nitroalkanes, Aldehydes, 1,3-Dicarbonyl Compounds, and Amines 187
9.13.5.1.1.1.2 Method 2: Solid-Phase Synthesis of Pyrrole-3-carboxamides from Enaminones and Nitroalkenes 188
9.13.5.1.1.1.3 Method 3: Combination of an Alkyl Propynoate, Aldehyde, and an Amine 189
9.13.5.1.1.1.4 Method 4: Samarium-Catalyzed Three-Component Coupling Reaction 190
9.13.5.1.1.1.5 Method 5: Titanium-Catalyzed Three-Component Coupling Reaction 191
9.13.5.1.2 By Formation of Two N--C Bonds and One C--C Bond 191
9.13.5.1.2.1 Fragment N and Two C--C Fragments 191
9.13.5.1.2.1.1 Method 1: Reaction of Amines and Two Carbonyl Compounds 191
9.13.5.1.2.1.2 Method 2: Reaction of Amines, 1,3-Dicarbonyl Compounds, and Alkenes or Alkynes 195
9.13.5.1.2.1.3 Method 3: Reaction of Amines, Carbonyl Compounds, and Alkenes or Alkynes 197
9.13.5.1.2.1.4 Method 4: Reaction of Amines and Combinations of Alkanes, Alkenes, and Alkynes 199
9.13.5.1.2.2 Fragments N, C--C--C, and C 202
9.13.5.1.2.2.1 Method 1: Reaction of Amines, a,ß-Unsaturated Carbonyl Compounds, and Carbon Nucleophiles 202
9.13.5.1.2.2.1.1 Variation 1: Reactions with Aldehydes and Acylsilanes as Umpolung Nucleophiles under Stetter Conditions 202
9.13.5.1.2.2.1.2 Variation 2: Reactions with Nitroalkanes as Nucleophiles for Conjugate Addition 204
9.13.5.1.2.2.2 Method 2: Reaction of Amines, 1,3-Diketones, and Aldehydes 205
9.13.5.1.3 By Formation of One N--C Bond and Two C--C Bonds 206
9.13.5.1.3.1 Fragments N--C, C--C, and C 206
9.13.5.1.3.1.1 Method 1: Reaction of Imines, Acid Chlorides, and Alkynes 206
9.13.5.1.3.1.2 Method 2: Synthesis of Pyrrole-3,4-dicarboxylates by Multicomponent Reactions Involving Dimethyl Acetylenedicarboxylate 210
9.13.5.1.3.1.2.1 Variation 1: Reaction of Dimethyl Acetylenedicarboxylate with Amino Acids and Acid Chlorides 211
9.13.5.1.3.1.2.2 Variation 2: Reaction of Dimethyl Acetylenedicarboxylate with Imines and Diazoacetonitrile or an Isocyanide 211
9.13.5.1.3.1.3 Method 3: Synthesis of N--C2 Benzo-Fused Pyrroles from Isoquinolines, Quinolines, or Pyridines 212
9.13.5.1.3.1.4 Method 4: Reactions of Aryl and Alkyl Acetylenes in Stoichiometric Metal-Mediated Pyrrole Syntheses 213
9.13.5.1.3.1.5 Method 5: Pyrrol-2-amine Synthesis from Nitriles, Aldehydes, and a-(Tosylamino)acetophenones 214
9.13.5.1.4 By Formation of Three C--C Bonds 215
9.13.5.1.4.1 Fragments C--N--C and Two C Fragments 215
9.13.5.1.4.1.1 Method 1: By Transformation of Benzylic Alcohols, Nitroalkanes, and tert-Butyl Isocyanoacetate Using Solid-Supported Reagents 215
9.13.5.1.4.1.2 Method 2: Reaction of Aldehydes, Ethyl (Diethoxyphosphoryl)acetate, and Tosylmethyl Isocyanide 216
9.13.5.1.5 By Formation of Two N--C Bonds 217
9.13.5.1.5.1 Fragments N and C--C--C--C 217
9.13.5.1.5.1.1 Method 1: Paal–Knorr Reaction 217
9.13.5.1.5.1.2 Method 2: Reaction of Amines with .-Modified Carbonyl Compounds as 1,4-Dicarbonyl Equivalents 225
9.13.5.1.5.1.3 Method 3: Reaction of Alka-2,3-dienyl Carbonyl Compounds and Cyclopropyl Ketones with Amines 228
9.13.5.1.5.1.4 Method 4: Reaction of Alk-3-ynyl Carbonyl Compounds with Amines 230
9.13.5.1.5.1.5 Method 5: Reaction of Buta-1,3-dienes and Related Compounds with Amines 232
9.13.5.1.5.1.6 Method 6: Reactions of 1,3-, 1,4-, and 1,5-Diynes with Amines 233
9.13.5.1.5.1.7 Method 7: Reaction of 1-En-3-yne Analogues and Amines 235
9.13.5.1.5.1.8 Method 8: Reaction of Enynol Analogues and Amine Derivatives 237
9.13.5.1.5.1.9 Method 9: Reaction of (Z)-1,4-Dichlorobut-2-ene with Amines 239
9.13.5.1.5.1.10 Method 10: Reaction of 2-Allylbuta-2,3-dienoates with Sodium Azide 240
9.13.5.1.5.1.11 Method 11: Reactions of 1,6-Dicarbonyl-2,4-diene Equivalents with Amines 241
9.13.5.1.6 By Formation of One N--C and One C--C Bond 242
9.13.5.1.6.1 Fragments N--C--C--C and C 242
9.13.5.1.6.1.1 Method 1: Phosphine-Mediated Reaction of a,ß-Unsaturated Imines with Acid Chlorides 242
9.13.5.1.6.1.2 Method 2: Rhodium(I)-Catalyzed [4 + 1]-Cycloaddition Reactions of a,ß-Unsaturated Imines with Terminal Alkynes 242
9.13.5.1.6.1.3 Method 3: Reaction of a,ß-Unsaturated Imines with Isocyanides or Carbenes 243
9.13.5.1.6.1.4 Method 4: Reaction of Acid Chlorides with Propargylamines and Sodium Iodide 244
9.13.5.1.6.2 Fragments N--C--C and C--C 245
9.13.5.1.6.2.1 Method 1: Reactions of 2H-Azirines and 1,3-Dicarbonyl Compounds 245
9.13.5.1.6.2.1.1 Variation 1: Reaction of Vinyl Azides with 1,3-Dicarbonyl Compounds 245
9.13.5.1.6.2.1.2 Variation 2: Reaction of Isolated 2H-Azirines with 1,3-Dicarbonyl Compounds 247
9.13.5.1.6.2.2 Method 2: Knorr-Type Reaction of Oximes and 1,3-Dicarbonyl Compounds 247
9.13.5.1.6.2.3 Method 3: Reaction of Enamines and Alkynes 248
9.13.5.1.6.2.4 Method 4: Reactions of 1,2-Diazabuta-1,3-dienes and Enol Derivatives 250
9.13.5.1.6.2.5 Method 5: Reactions of Imines and Alkenes 251
9.13.5.1.6.2.6 Method 6: Rearrangement Mechanisms 253
9.13.5.1.6.3 Fragments N--C and C--C--C 254
9.13.5.1.6.3.1 Method 1: Reaction of Amines with 1,3-Dicarbonyl Compounds and Equivalents 254
9.13.5.1.6.3.2 Method 2: Reactions of Imine Derivatives with a-Functionalized Alkenes and Alkynes 258
9.13.5.1.6.3.3 Method 3: Reactions of Substrates such as Cyclopropenes, Nitriles, Amino Chromium Carbenes, and a,ß-Unsaturated Carbonyl Compounds and Derivatives 261
9.13.5.1.7 By Formation of Two C--C Bonds 263
9.13.5.1.7.1 Fragments C--N--C--C and C 263
9.13.5.1.7.1.1 Method 1: Reaction of a-Amido Ketones with Ynolates 263
9.13.5.1.7.1.2 Method 2: Reaction of 4-(Trifluoroacetyl)munchnones with Wittig Reagents 263
9.13.5.1.7.2 Fragments C--N--C and C--C 264
9.13.5.1.7.2.1 Method 1: Reactions of a-Functionalized Isocyanides and Alkenes or Alkynes 265
9.13.5.1.7.2.1.1 Variation 1: Tosylmethyl Isocyanide and Alkenes 265
9.13.5.1.7.2.1.2 Variation 2: a-Substituted Tosylmethyl Isocyanides and Alkenes 265
9.13.5.1.7.2.1.3 Variation 3: Active Methylene Isocyanides and Alkynes 267
9.13.5.1.7.2.1.4 Variation 4: Active Methylene Isocyanides and Alkynes under Phosphine Catalysis with Reversal of Regioselectivity 268
9.13.5.1.7.2.1.5 Variation 5: Reactions with Alkenes Possessing Leaving Group Substituents 269
9.13.5.1.7.2.2 Method 2: Cycloaddition of Azomethine Ylides and Alkenes or Alkynes 271
9.13.5.1.7.2.2.1 Variation 1: N-a-Functionalized Amides (Thioamides), or N-a-Active Methylene Imines as Azomethine Ylide Precursors 271
9.13.5.1.7.2.2.2 Variation 2: N-Acylamino Acids as Azomethine Ylide Precursors in the Form of Munchnones 274
9.13.5.1.8 By Formation of One N--C Bond 278
9.13.5.1.8.1 Fragment N--C--C--C--C 278
9.13.5.1.8.1.1 Method 1: Paal–Knorr-Type Cyclizative Condensation 278
9.13.5.1.8.1.2 Method 2: 5-endo-Cyclization Reactions 283
9.13.5.1.8.1.2.1 Variation 1: Cyclization of Alk-3-ynylamines and Homopropargyl Azides 283
9.13.5.1.8.1.2.2 Variation 2: a-Alkynyl Imine Isomerization and Cyclization 286
9.13.5.1.8.1.2.3 Variation 3: Cyclization of Dienyl Azides and Dienyl Amines 286
9.13.5.1.8.1.3 Method 3: 5-exo-Cyclization Reactions 287
9.13.5.1.8.1.3.1 Variation 1: Cyclization of (Z)-(Alk-2-en-4-ynyl)amines and Analogues 287
9.13.5.1.8.1.3.2 Variation 2: Cyclization of (Z)-Alk-2-en-4-ynyl Imines 290
9.13.5.1.8.1.3.3 Variation 3: Cyclization of Alk-4-ynyl and Alk-4-enyl Imines 292
9.13.5.1.9 By Formation of One C--C Bond 295
9.13.5.1.9.1 Fragment C--N--C--C--C 295
9.13.5.1.9.1.1 Method 1: Reaction Involving Cyclization of Functionalized Ketene N,S-Acetals 295
9.13.5.1.9.1.2 Method 2: Metalation of Allyl Isothiocyanate 295
9.13.5.1.9.1.3 Method 3: Decarboxylative Cyclization of ß-Enaminones 295
9.13.5.1.9.1.4 Method 4: Enamine Cyclization 296
9.13.5.1.9.2 Fragment C--C--N--C--C 297
9.13.5.1.9.2.1 Method 1: Lewis Acid Catalyzed Ring Closure 297
9.13.5.1.9.2.2 Method 2: Palladium-Catalyzed Synthesis from Enamines 298
9.13.5.1.9.2.3 Method 3: Synthesis from N-Propargyl ß-Enaminones 298
9.13.5.1.9.2.4 Method 4: Synthesis Based on a Staudinger/Aza-Wittig Reaction 299
9.13.5.1.9.2.5 Method 5: Ring Closure To Give 3,4-Bis(lithiomethyl)dihydropyrroles and Subsequent Functionalization 299
9.13.5.1.9.2.6 Method 6: Metathesis-Based Approaches 300
9.13.5.2 Synthesis by Ring Transformation 301
9.13.5.2.1 By Ring Enlargement 301
9.13.5.2.1.1 Method 1: Aziridine Ring Expansion 301
9.13.5.2.1.2 Method 2: Azetidine, ß-Lactam, and Cyclopropane Ring Expansions 303
9.13.5.2.2 By Ring Contraction 305
9.13.5.2.2.1 Method 1: Nitrogen Extrusion from Pyridazines 305
9.13.5.2.2.2 Method 2: Sulfur Extrusion from N,S-Heterocycles 306
9.13.5.3 Synthesis by Aromatization 307
9.13.5.3.1 By Elimination 307
9.13.5.3.1.1 Method 1: Dihydropyrrolol Dehydration by Stoichiometric Copper(II) 307
9.13.5.3.2 By Dehydrogenation 308
9.13.5.3.2.1 Method 1: Dihydropyrrole Oxidation Using 2,3-Dichloro-5,6-dicyano-benzo-1,4-quinone 308
9.13.5.3.2.2 Method 2: Photochemical Dihydropyrrole Dehydrogenation 308
9.13.5.3.3 By Combinations of Elimination, Dehydrogenation, Isomerization, Ring Substitution, and Substituent Modification Reactions 309
9.13.5.3.3.1 Method 1: Elimination in Conjunction with Dehydrogenation 309
9.13.5.3.3.2 Method 2: Elimination in Conjunction with Isomerization 309
9.13.5.3.3.3 Method 3: Dihydropyrrole Dehydrogenation in Conjunction with Cross Coupling 310
9.13.5.3.3.4 Method 4: Elimination from Pyrrolidin-4-ones in Conjunction with Isomerization and 4-Amination 310
9.13.5.3.3.5 Method 5: Decarboxylative Oxidation in Conjunction with Elimination/Isomerization and Ring Substitution 313
9.13.5.3.3.5.1 Variation 1: 5-Halogenated and 2,4-Diformylated Pyrroles from 5-Oxopyrrolidine-2-carboxylates 313
9.13.5.3.3.5.2 Variation 2: 1-(2-Oxo-1,3-dihydroindol-3-yl)pyrrole from 4-Hydroxypyrrolidine-2-carboxylate 313
9.13.5.4 Synthesis by Substituent Modification 314
9.13.5.4.1 Substitution of Existing Substituents 314
9.13.5.4.1.1 Substitution of C-Hydrogen, Halogens, and Other Heteroatoms 314
9.13.5.4.1.1.1 C-Acylation and C-Formylation 315
9.13.5.4.1.1.1.1 Method 1: Formylation under Vilsmeier Conditions 315
9.13.5.4.1.1.1.2 Method 2: Formylation via Metalated Pyrrole Intermediates 316
9.13.5.4.1.1.1.3 Method 3: Electrophilic Pyrrole Acylation 317
9.13.5.4.1.1.2 C-Alkylation 320
9.13.5.4.1.1.2.1 Method 1: Pyrrole Alkylation with Electrophilic Alkanes 320
9.13.5.4.1.1.2.2 Method 2: Pyrrole Alkylation with Alkenes 323
9.13.5.4.1.1.2.2.1 Variation 1: Intermolecular Alkylation with Electrophilic Alkenes 323
9.13.5.4.1.1.2.2.2 Variation 2: Intramolecular Alkylation with Nonactivated Alkenes 327
9.13.5.4.1.1.2.3 Method 3: Pyrrole Alkylation with Imines 328
9.13.5.4.1.1.2.4 Method 4: Pyrrole Alkylation with Aldehydes and Ketones 329
9.13.5.4.1.1.3 C-Alkenylation 330
9.13.5.4.1.1.3.1 Method 1: Reaction of Halopyrroles with Alkenes under Heck Conditions 330
9.13.5.4.1.1.3.2 Method 2: Reaction of Pyrroles with Alkenes under Oxidative Heck Conditions 330
9.13.5.4.1.1.3.3 Method 3: Reaction of Pyrroles with Alkynes and Equivalents 332
9.13.5.4.1.1.4 C-Alkynylation 334
9.13.5.4.1.1.4.1 Method 1: Sonogashira Reaction of Halopyrroles with Alkynes 334
9.13.5.4.1.1.4.2 Method 2: Reaction of 1-Halogenated Alkynes with Pyrroles 335
9.13.5.4.1.1.5 C-Arylation 335
9.13.5.4.1.1.5.1 Method 1: Cross Coupling of Aryl Halides with Pyrrolylboronates, or Arylboronic Acids with Halopyrroles 336
9.13.5.4.1.1.5.2 Method 2: Cross Coupling at Pyrrole CH with Aryl Halides and Arylboronic Acids 338
9.13.5.4.1.1.5.3 Method 3: Decarboxylative Arylation of Pyrrole C-Carboxylates 344
9.13.5.4.1.1.6 C-Cyanation 345
9.13.5.4.1.1.6.1 Method 1: Oxidative a-Cyanation with Hypervalent Iodine(III) 345
9.13.5.4.1.1.6.2 Method 2: Oxidative Vilsmeier Cyanation 346
9.13.5.4.1.1.6.3 Method 3: Anodic Cyanation of 1-Aryl-1H-pyrroles 347
9.13.5.4.1.1.7 C-Trifluoromethylation 347
9.13.5.4.1.1.8 C-Halogenation 348
9.13.5.4.1.1.8.1 Method 1: Direct Substitution of Pyrrole CH by Halogen 348
9.13.5.4.1.1.8.1.1 Variation 1: Electrophilic Mono CH Substitution 348
9.13.5.4.1.1.8.1.2 Variation 2: Multiple Electrophilic CH Substitutions 353
9.13.5.4.1.1.8.2 Method 2: Halogenation via Metalated Pyrrole Intermediates 355
9.13.5.4.1.1.8.3 Method 3: Electrophilic Substitution of Pyrrole C-Carboxylate by Halogen 357
9.13.5.4.1.1.8.4 Method 4: Electrophilic Substitution of C-Trimethylsilyl Groups by Halogen 358
9.13.5.4.1.1.9 Functionalization with Nitrogen-Based Groups 359
9.13.5.4.1.1.9.1 Method 1: Electrophilic Nitration of Pyrroles 359
9.13.5.4.1.1.9.2 Method 2: Electrophilic Nitrosation of Pyrroles 361
9.13.5.4.1.1.9.3 Method 3: Reactions of Pyrroles with Arenediazonium Salts 362
9.13.5.4.1.1.9.4 Method 4: Azidation of Halo- and Aminopyrroles 363
9.13.5.4.1.1.9.5 Method 5: Amination and Amidation of Halopyrroles by Metal-Catalyzed Cross Coupling and Nucleophilic Aromatic Substitution 364
9.13.5.4.1.1.9.6 Method 6: Aryl- and Fluoroalkylsulfonamidation of Pyrroles 365
9.13.5.4.1.1.10 Functionalization with Silicon-Based Groups 366
9.13.5.4.1.1.10.1 Method 1: Pyrrole C-Silylation 366
9.13.5.4.1.1.11 Functionalization with Phosphorus-Based Groups 369
9.13.5.4.1.1.11.1 Method 1: Pyrrole Phosphorylation and Phosphinylation with Electrophilic Halophosphorus Reagents 369
9.13.5.4.1.1.11.2 Method 2: Pyrrole Phosphorylation and Phosphinylation via Lithiopyrrole Generation 371
9.13.5.4.1.1.12 Functionalization with Sulfur- and Selenium-Based Groups 372
9.13.5.4.1.1.12.1 Method 1: Electrophilic Pyrrolesulfonate Synthesis 372
9.13.5.4.1.1.12.2 Method 2: Chlorosulfonylation of Pyrroles with Chlorosulfonic Acid 373
9.13.5.4.1.1.12.3 Method 3: Pyrrolyl Sulfone Synthesis from Sulfonyl Chlorides 373
9.13.5.4.1.1.12.4 Method 4: Pyrrolyl Sulfoxide Synthesis 374
9.13.5.4.1.1.12.5 Method 5: Pyrrolylsulfonium Salt Synthesis 374
9.13.5.4.1.1.12.6 Method 6: Sulfanylpyrrole Synthesis 375
9.13.5.4.1.1.12.6.1 Variation 1: Synthesis of Sulfanylpyrroles Using Electrophilic Sulfenylation 375
9.13.5.4.1.1.12.6.2 Variation 2: Sulfanylpyrroles from Reactions of Metalated Pyrroles with Sulfur Sources 379
9.13.5.4.1.1.12.6.3 Variation 3: Sulfanylpyrroles from Nucleophilic Aromatic Substitution 380
9.13.5.4.1.1.12.6.4 Variation 4: Thiocyanation of Pyrroles 380
9.13.5.4.1.1.12.6.5 Variation 5: Dipyrrolyl Sulfide Synthesis 381
9.13.5.4.1.1.12.6.6 Variation 6: Preparation of Pyrroles with Multiple Sulfur Substituents 382
9.13.5.4.1.1.12.7 Method 7: Selanylpyrrole Synthesis 384
9.13.5.4.1.2 Substitution of N-Hydrogen 385
9.13.5.4.1.2.1 Method 1: N-Acylation 385
9.13.5.4.1.2.2 Method 2: N-Alkylation and -Allylation 385
9.13.5.4.1.2.3 Method 3: N-Alkenylation 387
9.13.5.4.1.2.4 Method 4: N-Arylation 388
9.13.5.4.1.2.5 Method 5: N-Amination and -Phosphinylation 389
9.13.5.4.2 Modification of Substituents 390
9.13.5.4.2.1 Modification of C-Acyl Substituents 391
9.13.5.4.2.1.1 Method 1: Reduction of 2- or 3-Acylpyrroles to 2- or 3-Alkylpyrroles with Hydrides, Zinc, or Hydrazine as Reductant 391
9.13.5.4.2.1.2 Method 2: Addition and Condensation Reactions of Acyl Groups 395
9.13.5.4.2.1.3 Method 3: Rearrangement of Acyl Groups 398
9.13.5.4.2.2 Modification of C-Alkyl Substituents 400
9.13.5.4.2.2.1 Method 1: Substitution Reactions of Mannich Bases 400
9.13.5.4.2.2.2 Method 2: Alkylation of a-Methylene Substituents 401
9.13.5.4.2.2.3 Method 3: Oxidation of a-Methylene Substituents 405
9.13.5.4.2.3 Modification of C-Vinyl Substituents 408
9.13.5.4.2.3.1 Method 1: Arylation by Heck Reaction 408
9.13.5.4.2.3.2 Method 2: Pyrrolecarbaldehyde Synthesis via Osmium(VIII) Oxide Oxidation 409
9.13.5.4.2.4 Modification of C-Nitropyrroles by Reductive Acylation 410
9.13.5.4.2.4.1 Method 1: Synthesis of 2- and 3-(Acylamino)-1H-pyrroles from 2- and 3-Nitro-1H-pyrroles and Acid Anhydrides 410
9.13.5.4.2.5 Modification of N-Substituents 412
9.13.5.4.2.5.1 Method 1: Synthesis of 1-(Hydroxymethyl)pyrrole Derivatives by Nucleophilic Addition to 1-Acylpyrroles 412
9.13.5.4.2.5.2 Method 2: Conjugate Addition to a,ß-Unsaturated 1-Acylpyrroles 412
9.13.5.4.2.5.2.1 Variation 1: Chiral Epoxide Synthesis 412
9.13.5.4.2.5.2.2 Variation 2: Enantioselective Addition of Carbon Nucleophiles 414
9.13.5.4.2.5.3 Method 3: Hydroformylation of 1-Allylpyrrole 417
Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms 438
16.9 Product Class 9: Cinnolines 438
16.9.5 Cinnolines 438
16.9.5.1 Synthesis by Ring-Closure Reactions 439
16.9.5.1.1 By Annulation to an Arene 439
16.9.5.1.1.1 By Formation of Two N--C Bonds 439
16.9.5.1.1.1.1 Fragments Arene-C--C and N--N 439
16.9.5.1.1.1.1.1 Method 1: Condensation of Quinones with Hydrazine 439
16.9.5.1.1.1.1.2 Method 2: Condensation of 1-Acyl-8-nitronaphthalenes with Hydrazine 441
16.9.5.1.1.1.1.3 Method 3: Cinnolin-3-amines via a Diels–Alder–Ene Sequence 441
16.9.5.1.1.2 By Formation of One N--C and One C--C Bond 443
16.9.5.1.1.2.1 Fragments Arene-N--N and C--C 443
16.9.5.1.1.2.1.1 Method 1: Synthesis of Cinnoline-3-carboxylates 443
16.9.5.1.1.2.1.2 Method 2: Synthesis of Pyridazinocinnolines 443
16.9.5.1.1.3 By Formation of One N--N Bond 444
16.9.5.1.1.3.1 Fragment N-Arene-Arene-N 444
16.9.5.1.1.3.1.1 Method 1: Condensation of Substituted Biaryls 444
16.9.5.1.1.3.1.1.1 Variation 1: Condensation of 2-Amino-2'-Nitrobiaryls 444
16.9.5.1.1.3.1.1.2 Variation 2: Cyclization of 2-Amino-3-(2-nitroaryl)quinolines 446
16.9.5.1.1.3.1.2 Method 2: Cyclization of 2,2'-Dinitrobiaryls 447
16.9.5.1.1.3.1.2.1 Variation 1: Reductive Cyclization of 2,2'-Dinitrobiaryls 448
16.9.5.1.1.3.1.2.2 Variation 2: Base-Catalyzed Cyclization of 2,2'-Dinitrobiphenyls 451
16.9.5.1.1.3.1.3 Method 3: Photooxidation of 3-(2-Aminophenyl)quinolin-2-amines 452
16.9.5.1.1.3.2 Fragment N-Arene-C--C--N 452
16.9.5.1.1.3.2.1 Method 1: Synthesis of Cinnoline Betaines 452
16.9.5.1.1.3.2.2 Method 2: Cyclization of 2-(Dinitrophenyl)alk-1-ene-1,1-diamines 453
16.9.5.1.1.4 By Formation of One N--C Bond 454
16.9.5.1.1.4.1 Fragment N--N-Arene-C--C 454
16.9.5.1.1.4.1.1 Method 1: Cyclization of Diazotized Anilines 454
16.9.5.1.1.4.1.1.1 Variation 1: Cyclization of Diazotized 2-Arylanilines 454
16.9.5.1.1.4.1.1.2 Variation 2: Cyclization of 2-(2,2-Difluorovinyl)anilines 456
16.9.5.1.1.4.1.2 Method 2: Cyclization of Diazotized 2-Acylanilines 457
16.9.5.1.1.4.1.3 Method 3: Cyclization of Diazotized Aryldifurylmethanes 458
16.9.5.1.1.4.1.4 Method 4: Cyclization of Alkynylanilines 459
16.9.5.1.1.4.1.4.1 Variation 1: Cyclization of Diazotized 2-Alkynylanilines 459
16.9.5.1.1.4.1.4.2 Variation 2: Cyclization of Diazotized 2-Diynylanilines 461
16.9.5.1.1.4.1.5 Method 5: Cyclization of (2-Alkynylaryl)- or (2-Acylaryl)triazenes 463
16.9.5.1.1.4.1.5.1 Variation 1: Cyclization of (2-Alkynylaryl)triazenes 463
16.9.5.1.1.4.1.5.2 Variation 2: Cyclization of (2-Acylaryl)triazenes 468
16.9.5.1.1.4.1.6 Method 6: Cyclization of (6-Oxocyclohexa-2,4-dienylidene)malononitrile Hydrazones 469
16.9.5.1.1.4.2 Fragment N--N--C--C-Arene 470
16.9.5.1.1.4.2.1 Method 1: Cyclization of Aryl-Substituted Heterocyclic Amines 470
16.9.5.1.1.4.2.1.1 Variation 1: Cyclization of Diazotized 3-Aminothiophenes 470
16.9.5.1.1.4.2.1.2 Variation 2: Cyclization of Diazotized 5-Amino-4-arylpyrazoles 472
16.9.5.1.1.4.2.1.3 Variation 3: Cyclization of Diazotized 3-Amino-4-arylmaleimides 473
16.9.5.1.1.4.2.2 Method 2: Cyclization of 2-Diazo-3-(haloaryl)-3-hydroxypropanoates 473
16.9.5.1.1.5 By Formation of One C--C Bond 474
16.9.5.1.1.5.1 Fragment Arene-N--N--C--C 474
16.9.5.1.1.5.1.1 Method 1: Cyclization of Phenylhydrazones 474
16.9.5.1.1.5.1.1.1 Variation 1: Cyclization of Oxomalonic Acid Derivatives 475
16.9.5.1.1.5.1.1.2 Variation 2: Synthesis of 3-Aroyl- or 4-Arylcinnolines 476
16.9.5.1.1.5.1.1.3 Variation 3: Synthesis of 3-Azolylcinnolines from Chloromethyl Ketones 479
16.9.5.1.1.5.1.1.4 Variation 4: Synthesis of 4-Alkyl-Substituted Cinnolines 480
16.9.5.2 Synthesis by Ring Transformation 481
16.9.5.2.1 Method 1: From 2H-Indazole Ring Enlargement 481
16.9.5.3 Synthesis by Aromatization 481
16.9.5.3.1 Method 1: Aromatization of Dihydrocinnolines 481
16.9.5.4 Synthesis by Substituent Modification 482
16.9.5.4.1 Substitution of Existing Substituents 482
16.9.5.4.1.1 Of Hydrogen 482
16.9.5.4.1.1.1 Method 1: By Lithiation 482
16.9.5.4.1.2 Of Heteroatoms 483
16.9.5.4.1.2.1 Method 1: By Metal–Halogen Exchange 483
16.9.5.4.1.2.2 Method 2: By Carbon Substituents via Cross-Coupling Reactions 484
16.9.5.4.1.2.3 Method 3: By Heteroatom Nucleophiles via Nucleophilic Substitution 487
16.9.5.4.1.2.3.1 Variation 1: Substitution of a Hydroxy Group by a Halogen 487
16.9.5.4.1.2.3.2 Variation 2: Introduction of Chalcogen Substituents 487
16.9.5.4.1.2.3.3 Variation 3: Introduction of Nitrogen Substituents 490
16.9.5.4.2 Modification of Existing Substituents 492
16.9.5.4.2.1 Of Carbon Substituents 492
16.9.5.4.2.1.1 Method 1: Of Carboxylic Acids and Derivatives 492
16.9.5.4.2.1.2 Method 2: Of Ketones, Aldehydes, and Derivatives 493
16.9.5.4.2.2 Of Heteroatom Substituents 495
16.9.5.4.2.2.1 Method 1: Of Sulfur-Containing Groups 495
16.9.5.4.2.2.2 Method 2: Of Amines 496
16.9.5.4.3 Addition Reactions 498
16.9.5.4.3.1 Method 1: Addition of Organic Groups 498
16.9.5.4.3.2 Method 2: Addition of Heteroatoms 499
16.23 Product Class 23: Diphosphinines 504
16.23.4 Diphosphinines 504
16.23.4.1 1,2-Diphosphinines 504
16.23.4.1.1 Method 1: Synthesis of a 1,2-Dihydro-1,2-diphosphinine Derivative by Dimerization 504
16.23.4.1.2 Method 2: Synthesis of a 1,2-Dihydro-1,2-diphosphinine Chelate Complex with Palladium(II) Chloride 505
16.23.4.2 1,3-Diphosphinines 507
16.23.4.3 1,4-Diphosphinines 507
Author Index 510
Abbreviations 540
List of All Volumes 546

5.2.1 Product Subclass 1: Tin Hydrides


K. Tchabanenko

General Introduction


Like silicon and carbon, tin is a group 14 element, but with a more metallic character. This is reflected in the nomenclature of organotin compounds, which can be regarded as derivatives of the metal and named by using “tin” as a suffix, so that, for example, Bu4Sn can be named “tetrabutyltin” and Bu3SnH can be named “tributyltin hydride”. In an alternative system recommended by the International Union of Pure and Applied Chemistry, organotin compounds are named as derivatives of stannane [tin(IV) hydride], so that, for example, Ph3SnH is named “triphenylstannane”. Both the tin- and stannane-type nomenclature are used throughout this section, in common with practice in the general literature.

The compounds discussed in this section contain up to three alkyl or aryl groups bonded to a tin atom, with the remainder of the four valences being occupied by hydrogen atoms.[1,2] Whereas stannane (SnH4), the parent compound, is highly unstable, even at room temperature, and undergoes rapid decomposition to tin and molecular hydrogen,[3] its alkyl or aryl derivatives are somewhat more stable. Monoorganostannanes (R1SnH3) can be stored for a few days at room temperature, whereas diorganostannanes (R12SnH2) are stable for several weeks, and triorganostannanes (R13SnH) can be stored almost indefinitely. Alkylstannanes are generally more stable than the corresponding arylstannanes, and an increase in the bulk of the alkyl substituents leads to greater thermal stability.

The usefulness of organotin hydrides is to some degree limited by the toxic hazards they present, which depend on their volatility and degree of substitution.[1,4] Tributylstannane (tributyltin hydride; Bu3SnH) is less toxic than the more volatile triethyl and trimethyl analogues, and it is therefore the most widely used organostannane. This compound is best prepared by the reduction of hexabutyldistannoxane [bis(tributylstannyl) ether] with poly(methylhydrosiloxane) ( Scheme 1).[5] Other alkyl- and arylstannanes are usually prepared by the reduction of the corresponding organotin halides with lithium aluminum hydride[615] or sodium borohydride.[1618] Another useful approach to organostannanes involves the treatment of organostannylated metal derivatives (R13SnLi, R13SnNa, or R13SnMgBr) with water.[12,1923] This method can be used to prepare tributylstannane-d1 (tributyltin deuteride).[24] Alternatively, triorganostannanes can be prepared by reduction of the corresponding hexaorganodistannanes with metal hydrides ( Scheme 1).[25]

 Scheme 1 Methods for the Preparation of Tin Hydrides[525]

The principal applications of organotin hydrides in organic synthesis include mediation of free-radical dehalogenation, deoxygenation, addition, cyclization, and rearrangement reactions, and hydrostannylation of unsaturated functional groups ( Scheme 2). The chemistry, preparation, and reactions of organostannanes have been reviewed many times;[1,2,2629] in particular, organotin-mediated radical reactions[3035] and transition-metal-catalyzed hydrostannylation reactions[3639] have received a great deal of attention.

 Scheme 2 Some Applications of Tin Hydrides in Organic Chemistry[3039]

In general, stannanes are clear, colorless liquids that are frequently purified by distillation at reduced pressures. All show intense, sharp Sn—H IR absorption bands (e.g., SnH4, 1898 cm−1; BuSnH3, 1862 cm−1; Bu2SnH2, 1835 cm−1; and BuSnH3, 1813 cm−1).[40] In the 1H NMR spectra of alkylstannanes, resonances of hydrogen atoms bound to tin occur in the region δ 3.85–4.80.[4044] The addition of electronegative substituents to the tin atom shifts the signal to higher values of δ [e.g., δ 7.42 for Bu2SnHCl]. 119Sn NMR spectra and 119Sn–13C coupling constants are also useful in the characterization of organotin compounds. Because tin has 10 naturally occurring isotopes, tin-containing compounds can be easily recognized by mass spectrometry.

SAFETY:

Organotin compounds exhibit a range of toxicities,[1,4] with a general tendency for heavier and less volatile tributyl- and triphenylstannanes to be less toxic than the corresponding lighter and more volatile triethyl or trimethyl analogues, which should not be used in large-scale experiments. Tributylstannanes cause skin burns and can be absorbed through the skin. It is recommended that all organotin hydrides are handled with care in an adequate fume hood, and that protective clothing and gloves are worn at all times. Appropriate waste-disposal procedures should be followed for all tin-contaminated chemicals and solvents.

The boiling points of commonly used stannanes are collected in  Table 1.

 Table 1 Boiling Points of Common Tin Hydrides[58,15,45,46]

Tin Hydride bp (°C) Pressure (Torr) Ref
MeSnH3 0 760 [6]
Me2SnH2 35 760 [6]
Me3SnH 59 760 [6]
Et3SnH 142 760 [7]
Pr3SnH 59–54 4 [5]
BuSnH3 99–101 760 [8]
Bu2SnH2 75–76 12 [45]
Bu3SnH 68–74 0.3 [15]
65–67 0.6 [45]
Bu3SnD 70–74 0.5 [46]
Ph3SnH 168–172 0.5 [8]

Although many organotin hydrides are commercially available, better results are generally obtained with freshly prepared reagents. Some convenient and reliable methods for the synthesis of tin hydrides, including the most commonly used of these reagents, are discussed below.

Synthesis of Product Subclass 1


5.2.1.1 Method 1: Reduction of Tin Halides


Organotin hydrides are generally synthesized by reduction of the corresponding organotin halides with metal hydrides. Lithium aluminum hydride is by far the most commonly used reducing agent,[615] although other hydride sources such as dialkylaluminum hydrides,[47] aluminum amalgam,[48] sodium borohydride,[1719] or potassium borohydride[49] can also be used.

5.2.1.1.1 Variation 1: Reduction of Tin Halides with Lithium Aluminum Hydride


The reduction of alkyl- and aryltin chlorides or bromides by lithium aluminum hydride in ethereal solvents can be used to prepare the corresponding mono-, di-, or triorganostannanes ( Table 2).[6,10,1315] In general, the reactions proceed smoothly at room temperature to give products of high purity. Diethyl ether is normally the solvent of choice, but other ethereal solvents such as dibutyl ether, diglyme, or 1,4-dioxane can be used if separation of the products from diethyl ether is difficult or if high reaction temperatures are required. The preparation of volatile tin hydrides or the parent stannane requires the use of specialized vacuum lines.[14] Deuterated forms of tin hydrides can be readily prepared by reduction with lithium aluminum deuteride.[50]

 Table 2 Reduction of Tin Chlorides with Lithium Aluminum Hydride[68,12,15]

Entry Reactant Solvent Product Yield...

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte 1h-pyrroles • calcium alkoxides • calcium amides • calcium compounds • calcium phosphates • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • cinnolines • compound organic synthesis • diorganocalcium compounds • diphosphinines • Functional Group • grignard reagents • heterobimetallic calcium compounds • Mechanism • Method • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • organocalcium halides • organocalcium hydrides • Peptide synthesis • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • tin compounds • tin hydrides
ISBN-10 3-13-178891-7 / 3131788917
ISBN-13 978-3-13-178891-7 / 9783131788917
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 19,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99