Handbook of Nonwovens -  S. J. Russell

Handbook of Nonwovens (eBook)

eBook Download: PDF | EPUB
2006 | 1. Auflage
544 Seiten
Elsevier Science (Verlag)
978-1-84569-199-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
240,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Nonwovens are a unique class of textile material formed from fibres that are bonded together through various means to form a coherent structure. Given their rapid industrial development and diverse markets, understanding and developing nonwovens is becoming increasingly important. With its distinguished editor and array of international contributors, the Handbook of nonwovens, offers a comprehensive review of the latest advances in this area and how they can be applied to particular products.Initial chapters review the development of the industry and the different classes of nonwoven material. The book then discusses methods of manufacture such as dry-laid, wet-laid and polymer-laid web formation. Other techniques analysed include mechanical, thermal and chemical bonding as well as chemical and mechanical finishing systems. The book concludes by assessing the characterisation, testing and modelling of nonwoven materials.Handbook of nonwovens is a valuable reference for those involved in the manufacturing and use of nonwoven products in such areas as; transport, medicine, hygiene and various branches of engineering. - Provides a comprehensive review of the latest advances in this important area - Written by leading experts in the field - Discusses different methods of manufacture, bonding and finishing

Dr Stephen Russell is a Senior Lecturer in the Centre for Technical Textiles, University of Leeds and the Director of the Nonwovens Research Group (NRG), UK.
Nonwovens are a unique class of textile material formed from fibres that are bonded together through various means to form a coherent structure. Given their rapid industrial development and diverse markets, understanding and developing nonwovens is becoming increasingly important. With its distinguished editor and array of international contributors, the Handbook of nonwovens, offers a comprehensive review of the latest advances in this area and how they can be applied to particular products.Initial chapters review the development of the industry and the different classes of nonwoven material. The book then discusses methods of manufacture such as dry-laid, wet-laid and polymer-laid web formation. Other techniques analysed include mechanical, thermal and chemical bonding as well as chemical and mechanical finishing systems. The book concludes by assessing the characterisation, testing and modelling of nonwoven materials.Handbook of nonwovens is a valuable reference for those involved in the manufacturing and use of nonwoven products in such areas as; transport, medicine, hygiene and various branches of engineering. - Provides a comprehensive review of the latest advances in this important area- Written by leading experts in the field- Discusses different methods of manufacture, bonding and finishing

2

Dry-laid web formation


A.G. Brydon    Garnett Group of Associated Companies, UK (Sections 2.12.12)

A. Pourmohammadi    Consultant, Iran (Sections 2.132.20)

2.1 Introduction


The dry-laid nonwoven sector utilises carding, garnetting, airlaying and in certain specialist applications, direct feed batt formation processes to convert staple fibres into a web or batt structure that is uniform in weight per unit area.

2.2 Selection of raw materials for carding


Virtually any fibre that can be carded can be, and probably already is, used in nonwovens including both organic and inorganic fibres. As noted in Chapter 1, man-made fibres account for the majority of raw materials used in the nonwovens industry, and in the carding sector, polyester is the most widely used. This is principally because of its suitability for many product applications and comparatively low cost. Polypropylene is also important, particularly in the manufacture of heavyweight needled fabrics for durable products such as floorcoverings and geosynthetics as well as in needlepunched filtration media and lightweight thermal bonded fabrics for hygiene disposables. Viscose rayon is extensively used in the medical and hygiene sectors, principally because of its high moisture regain. The flexibility of the carding process is reflected by the diversity of staple fibre types that are utilised by the industry and includes polymers, glass and ceramic materials. Table 2.1 gives a general overview of the fibres that are carded either alone or in blends. Fundamental to the suitability of a particular fibre for dry-laid processing is its machine compatibility as well as its influence on fabric properties. There are numerous examples of new fibre developments that have been slow to develop because of processing problems, particularly during carding.

Table 2.1

Summary of fibre properties

Natural Cotton 11–22 1.52 35 7 7
Vegetable Flax 5–40 1.52 55 3 7
Jute 8–30 1.52 50 2 12
Natural Wool 18–44 1.31 12 40 14
Animal Silk 10–15 1.34 40 23 10
Regenerated Viscose rayon 12 + 1.46–1.54 20 20 13
Acetate 15 + 1.32 13 24 6 230
Triacetate 15 + 1.32 12 30 4 230
Synthetic Nylon 6 14 + 1.14 32–65 30–55 2.8–5 225
Nylon 6.6 14 + 1.14 32–65 16–66 2.8–5 250
Polyester 12 + 1.34 25–54 12–55 0.4 250
Acrylic 12 + 1.16 20–30 20–28 1.5 Sticks at 235
Polypropylene 0.91 60 20 0.1 165
Spandex (Lycra) 1.21 6–8 444–555 1.3 230
Inorganic Glass 5 + 2.54 76 2–5 0 800
Asbestos 0.01–0.30 2.5 1 1500

Common problems are uncontrolled static electricity, low fibre-to-fibre cohesion and low fibre extension (the minimum required is 2–5%) leading to fibre breakage and poor yield. Whilst natural fibres such as cotton and wool have been carded as long as cards have been in existence, man-made fibres such as polyester have evolved to improve compatibility with high-speed nonwoven carding systems. The applied forces in carding give rise to fibre breakage and permanent fibre elongation, which modifies the original fibre length distribution and in some low-temperature materials such as PVC may be subject to thermal shrinkage during the process.

Whilst exceptions do exist, the general range of fibre dimensions suitable for the carding sector can be given approximately as 1–300 dtex fibre linear density and 15–250 mm mean fibre length. In practice such a range of fibre dimensions could not be satisfactorily processed on one card without modifying the card roller configuration and layout, settings and the card wire. Blending extends the range of fibre lengths and finenesses that can be processed and in certain sectors of the industry carrier fibres are used to aid processing of short, stiff or low surface friction materials. It should also be understood that the mean fibre length and the fibre length distribution as measured before carding is substantially different after carding due to fibre breakage or permanent elongation of fibres in the process. Cotton and other short-staple fibres of < 60 mm fibre length are used in the short-staple spinning industry, where traditionally, a modular sequence of processes has been developed to prepare, card and spin the fibre into yarn. Man-made fibres of similar diameter to cotton are therefore cut to a similar length so that they can be processed on the same machinery, either in 100% or blended form, depending on enduse requirements. Fibres are commonly square-cut to one length prior to processing. This gives a different fibre length distribution from natural fibres, which typically have a trapezoidal-shaped distribution.

Cotton cards are sometimes used to manufacture, for example, feminine hygiene and some absorbent medical products from short-staple fibres of c002E 28–45 mm mean fibre length composed of bleached cotton and viscose rayon. However, the use of short-staple or cotton ‘flat’ cards in the nonwovens industry is not extensive because the revolving flats limit the maximum width of the card to about 1.5 m and the mixing power of the machine is significantly lower than a worker-stripper card. Most carded nonwovens are manufactured from fibres with a mean length typically in the range 45–100 mm, although in some specialist applications fibres outside this range are carded. Accordingly, worker-stripper cards originally developed to process longer fibres are most commonly used by the nonwovens carding industry.

Fibre characteristics not only influence fabric properties but also processing performance. Web cohesion, fibre breakage, nep formation and web weight uniformity are key quality parameters and are influenced by fibre diameter, fibre length, fibre tensile properties, fibre finish and crimp. During the production of man-made fibres, crimp is introduced to increase web cohesion, bulk and sometimes elastic recovery. The crimp shape and frequency as well as its uniformity depend on the manufacturing conditions and in practice are subject to significant variation. The crimp may decay during carding due to the applied forces and temperatures that occur; cellulose fibres are particularly prone to this. Fibre finish modifies both fibre to fibre friction (cohesion) and fibre to metal friction (holding power of the wire) during carding.

Although polymer additives can be introduced before extrusion to influence properties, fibre finish is normally topically applied after extrusion, before the fibre is baled and despatched for carding. Both the static and dynamic friction are important, fibre to fibre and fibre to metal. The ability of a fibre finish to increase fibre cohesion whilst at the same time reducing friction is an example of frictional ‘stick-slip’ behaviour. A useful analogy is to imagine two sheets of glass coated by a thin film of lubricant. Placed together, the glass sheets easily slide over each other but it is not so easy to prise the sheets apart.

In carding, the fibres should readily slide against each other but in a controlled manner. Fibre finishes also contain anti-static agents, the effectiveness of which is particularly important when carding hydrophobic fibres such as polypropylene. Other finish additives may be used either to improve downstream processing efficiency or to meet the end-use requirements of the finished fabric. Accordingly, it is possible to use finish additives to improve wetting out of fibres by modifying surface energy, reduce foaming in processes such as hydroentanglement, meet food contact approval regulations and create biodegradable formulations for disposable fabrics. The moisture content or regain of fibres is also important because of the opportunity to control static electricity during carding as well as the influence of imbibed water on the tensile properties of...

Erscheint lt. Verlag 22.12.2006
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Maschinenbau
Wirtschaft
ISBN-10 1-84569-199-7 / 1845691997
ISBN-13 978-1-84569-199-8 / 9781845691998
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99