Visual and Oculomotor Functions -

Visual and Oculomotor Functions (eBook)

Advances in Eye Movement Research
eBook Download: PDF | EPUB
2013 | 1. Auflage
474 Seiten
Elsevier Science (Verlag)
978-1-4832-9045-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A collection of contemporary work in various areas of eye-movement research with an emphasis on physiological aspects is presented in this book. The contributions are divided into six sections: I. saccadic eye movements; II. smooth pursuit and motion perception; III. eye movements in pathology and clinical settings; IV. neurophysiology of eye movements; V. optokinetic nystagmus; and VI. methods. This volume provides updated information on the most recent research on eye movements carried out mainly in Europe.
A collection of contemporary work in various areas of eye-movement research with an emphasis on physiological aspects is presented in this book. The contributions are divided into six sections: I. saccadic eye movements; II. smooth pursuit and motion perception; III. eye movements in pathology and clinical settings; IV. neurophysiology of eye movements; V. optokinetic nystagmus; and VI. methods. This volume provides updated information on the most recent research on eye movements carried out mainly in Europe.

Front Cover 1
Visual and Oculomotor Functions: Advances in Eye Movement Research 3
Copyright Page 4
Table of Contents 9
INTRODUCTION 5
CONTRIBUTORS 15
PART I: SACCADIC EYE MOVEMENTS 21
CHAPTER 1. FOR AND AGAINST SPATIAL CODING OF SACCADES 23
From the double-step experiment to models of spatial mapping or updating 23
Neural signals related to spatial coding 26
Spatial coding of saccades 27
Where does the hypothetic eye position signal arise? 28
Spatial coding of saccades 29
How reliable is the internal eye position signal? 29
Spatial coding of saccades 31
Where is the eye position signal combined with the input of retinal origin? 32
Conclusions 33
Spatial coding of saccades 35
Acknowledgements 35
References 35
CHAPTER 2. DIFFERENCES IN EYE MOVEMENT RELATED POTENTIALS WITH VISUALLY TRIGGERED HORIZONTAL AND VERTICAL SACCADES 39
Introduction 39
Saccadic evoked potentials 41
Method 41
Results 42
Discussion 47
References 48
Saccadic evoked potentials 49
CHAPTER 3. SACCADES TOWARD EXTERNALLY OR INTERNALLY ACQUIRED MEMORIZED LOCATIONS 51
Introduction 51
Methods 52
Results 54
External or internal location acquisition 57
Discussion 59
Acknowledgements 62
References 62
External or internal location acquisition 63
CHAPTER 4. MASKING EFFECTS IN SACCADIC EYE MOVEMENTS 65
Introduction 65
Possible sources of saccadic omission 65
Masking during saccades 67
Masking during saccades 69
Experimental work 71
Masking during saccades 73
References 73
CHAPTER 5. SACCADIC LATENCY UNDER NUMERICAL, SPATIAL AND VERBAL TASKS 75
Introduction 75
Method 76
Results and Discussion 77
Acknowledgements 78
References 78
Appendix List of questions 79
CHAPTER 6. A METHOD FOR THE CLINICAL USE OF SECONDARY SACCADE LATENCY 81
Introduction 81
Materials and methods 82
Results 83
L2 in the evaluation of single patient 85
Conclusion 87
References 88
CHAPTER 7. STIMULUS UNCERTAINTY AND THE OCCURRENCE OF HUMAN EXPRESS SACCADES 89
Introduction 89
Method 90
Results 92
Model 95
Discussion 99
Acknowledgements 100
References 100
CHAPTER 8. REACTION TIM. AND VELOCITY OF SMALL SACCADES IN MAN 101
Introduction 101
Methods 102
Results 102
Discussion 106
References 107
CHAPTER 9. THE EFFECT OF FRONTAL AND PARIETAL LESIONS ON SACCADIC REACTION TIME 109
Introduction 109
Method 110
Results 112
Discussion 116
References 117
PART II: SMOOTH PURSUIT AND MOTION PERCEPTION 119
CHAPTER 10. SMOOTH PURSUIT IN STRABISMIC CHILDREN 121
Introduction 121
Methods 122
Results 123
Discussion 125
References 127
CHAPTER 11. SMOOTH PURSUIT OVER A STRUCTURED BACKGROUND: THE EFFECTS OF TEMPORAL AND SPATIAL CHANGES IN TARGET AND BACKGROUND 129
Introduction 129
Methods 130
Experiment 1: The breakdown of active pursuit using tachistoscopic illumination 131
Experiment 2: Effect of background frequency 133
Experiment 3: Effect of background phase 136
Experiment 4: Effect of background position 138
General Discussion 139
References 140
CHAPTER 12. QUANTIFYING PERCEPTUAL CONSTANCY DURING TRACKING EYE MOVEMENTS AND NONCOLLINEAR MOTION OF A BACKGROUND TARGET 143
Introduction 143
Perceptual constancy during ocular pursuit: Collinear case 144
Perceptual constancy during ocular pursuit: Noncollinear case 146
Acknowledgements 150
References 150
CHAPTER 13. SMOOTH PURSUIT EYE MOVEMENTS DURING AND AFTER ACUTE EXPOSURE TO HYPOBARIC HYPOXIA 153
Introduction 153
Methods 154
Results 156
Discussion 161
Acknowledgements 162
References 163
CHAPTER 14. A CONTROL SYSTEM OF VOLUNTARY EYE MOVEMENT IN TRACKING A VISUAL TARGET 165
Introduction 165
A model of the control system 166
Results and Discussion 170
References 175
CHAPTER 15. SHORT DELAYS OF VERGENCE EYE MOVEMENTS IN MAN DURING PURSUIT TASKS IN LIGHT AND DARK CONDITIONS 177
Introduction 177
Methods 178
Results 180
Discussion 184
Acknowledgements 187
References 187
CHAPTER 16. BINOCULAR EYE MOVEMENTS WHILE SHOWING A MOVING STIMULUS TO ONE EYE ONLY 189
Introduction 189
Experimental equipment 190
Evaluation of eye movement detection accuracy 191
Measurement of binocular eye movement while watching at field-sequential stereoscopic images 192
Experimental conditions 192
Results 194
Discussion 196
Conclusion 202
Acknowledgements 202
References 202
PART Ill: EYE MOVEMENTS IN PATHOLOGY AND CLINICAL SETTINGS 205
CHAPTER 17. PREDICTIVE VELOCITY ESTIMATION IN THE PURSUIT REFLEX OF PATIENTS WITH CEREBELLAR ATAXIA AND PARKINSON'S DISEASE 207
Introduction 207
Methods 208
Results 211
Discussion 215
References 216
CHAPTER 18. GAIN AND PEAK VELOCITY OF SACCADES IN PARKINSON'S DISEASE AND PARKINSONISM: A COMPARISON BETWEEN EXPERIMENT AND COMPUTER SIMULATION 219
Introduction 219
Methods 221
Results 224
Discussion and conclusions 229
References 231
CHAPTER 19. CHARACTERISTICS OF REMEMBERED SACCADES IN PARKINSON'S DISEASE 233
Introduction 233
Method 235
Results 238
Inverse reconstruction 239
Discussion 241
Acknowledgements 242
References 243
CHAPTER 20. SACCADES AND 6-METHYLPREDNISOLONE TREATMENT IN MULTIPLE SCLEROSIS 245
Introduction 245
Material and methods 246
Results 248
Discussion 250
References 251
CHAPTER 21. SACCADIC DOWNPULSION IN A PATIENT WITH CEREBELLAR DISEASE 253
Introduction 253
Case report 253
Oculomotor Findings 254
Discussion 256
References 260
CHAPTER 22. ABNORMAL SACCADIC EYE MOVEMENTS IN PSYCHIATRIC PATIENTS AS PART OF A SPATIAL MANAGEMENT DISORDER 263
Introduction 263
Method 265
Results 267
Discussion 270
Conclusion 272
Acknowledgements 272
References 272
PART IV: NEUROPHYSIOLOGY OF EYE MOVEMENTS 275
CHAPTER 23. NEURAL NETWORKS AND DYNAMIC FEEDBACK IN THE SUPERIOR COLLICULUS 277
Introduction 277
Gaze control model 278
Simulation examples 282
Discussion 286
Acknowledgements 288
References 288
CHAPTER 24. DISCHARGE BEHAVIOR OF OMNIPAUSE NEURONS IN THE CAT 291
Introduction 291
Methods 292
Results 293
Discussion 300
References 302
CHAPTER 25. THE ROLE OF OMNIPAUSE NEURONS DURING GAZE SHIFTS 305
Introduction 305
Method 306
Results 307
Discussion 311
Acknowledgements 313
References 313
CHAPTER 26. EFFECT OF KETAMINE ON THE OCULOMOTOR NEURAL INTEGRATOR AND ON THE VELOCITY STORAGE ELEMENT 315
Introduction 315
Theory of oculomotor control 316
Methods 320
Results 321
Discussion 328
Conclusion 330
Acknowledgements 330
References 330
CHAPTER 27. SPATIO-TEMPORAL PATTERN OF EYE MOVEMENTS INDUCED BY KETAMINE IN THE RAT 335
Introduction 335
Method 336
Results 337
Discussion 340
Acknowledgements 342
References 342
CHAPTER 28. EFFECTS OF PERINATAL HYPOXIA ON THE POSTNATAL DEVELOPMENT OF SPONTANEOUS SACCADIC EYE MOVEMENTS IN RABBITS 345
Introduction 345
Material and methods 346
Results 348
Discussion 352
References 355
CHAPTER 29. OTOLITHIC CONTROL OF ANTICOMPENSATORY FAST PHASES (AFPs) IN CATS 357
Introduction 357
Methods 358
Results 360
Discussion 366
Acknowledgements 369
References 370
CHAPTER 30. INFLUENCE OF VESTIBULAR AND OPTOKINETIC STIMULATION ON EYE FIXATION IN THE MACAQUE MONKEY 371
Introduction 371
Methods 372
Results 373
Discussion 378
Acknowledgements 379
References 380
PART V: VOR/OKN 381
CHAPTER 31. INFLUENCE OF NMDA RECEPTORS IN THE OPTOKINETIC AFTERNYSTAGMUS (OKAN) 383
Introduction 383
Method 385
Results 386
Discussion 389
Acknowledgements 392
References 392
CHAPTER 32. EFFECTS OF UNILATERAL VISUAL DEPRIVATION IN ADULT FROG ON MONOCULAR OKN DIRECTIONAL ASYMMETRY 395
Introduction 395
Method 396
Results 399
Discussion 401
References 403
CHAPTER 33. EFFECTS OF UNILATERAL MICROINJECTIONS OF GABAA ANTAGONIST INTO THE CHICKEN MESENCEPHALIC STRUCTURES RESPONSIBLE FOR OKN 407
Introduction 407
Material and methods 409
Results 411
Discussion 414
Acknowledgements 416
References 416
CHAPTER 34. THE EFFECT OF HEAD REORIENTATION ON THE DIRECTION OF POSTROTATORY NYSTAGMUS IN HUMANS 419
Introduction 419
Methods 420
Results 421
Discussion 424
Acknowledgements 425
References 425
PART VI: METHODS 427
CHAPTER 35. THE MEASUREMENT OF SMALL EYE MOVEMENTS USING AN INFRA-RED LIMBUS REFLECTION TECHNIQUE 429
Introduction 429
Evaluation of the system 433
Experiment 436
Acknowledgements 440
References 440
CHAPTER 36. HEAD AND EYE COORDINATION ANALYSIS AND A NEW GAZE ANALYZER DEVELOPED FOR THIS PURPOSE 443
Introduction 443
Experimental setup 444
Method 445
Results and Discussion 446
General discussion 451
Acknowledgements 453
References 453
AUTHOR INDEX 455
SUBJECT INDEX 471

Contributors


Agostino P. Accardo,     Dipartimento di Elettrotecnica, Elettronica ed Informatica, via Valerio 10, 34100 Trieste, Italy

Franz Aiple,     Department of Neurophysiology, University of Freiburg, Hansastr. 9, D-7800 Freiburg, Germany

Tim Anderson,     Neurology Department, Christchurch Hospital, Private Bag 4710, Christchurch, New Zealand

Riccardo Antonini,     Electronic Engineering Department, II University-Tor Vergata, Rome, Italy

Graham R. Barnes,     MRC Human Movement and Balance Unit, Institute of Neurology, 23 Queen Square, London WC1N 3BG, UK

Giorgio Beltrami,     Università degli Studi di Pavia, Dipartimento di Informatica e Sistemistica, Via Abbiategrasso 209, 27100 Pavia, Italy

Carlo Benassi,     Istituto di Fisiologia Umana, via Campi 287, 41100 Modena, Italy

Herbert Bengelsdorf,     New York Medical College, USA

Roberto Bergamaschi,     Istituto Neurologico C. Mondino, Università di Pavia, Via Palestro 3, 27100 Pavia, Italy

Alain Berthoz,     Laboratoire de Physiologie de la Perception et de l’Action, CNRS – Collège de France, 15, Rue de l’Ecole de Médecine, 75270 Paris Cedex 06, France

Gian Paolo Biral,     Istituto di Fisiologia Umana, via Campi 287, 41100 Modena, Italy

Nicole Bonaventure,     Laboratoire de Neurophysiologie et Biologie des Comportements, Centre de Neurochimie du CNRS, 5, rue Blaise Pascal, 67084 Strasbourg Cedex, France

Lo J. Bour,     Department of Clinical Neurophysiology and Neurology, Academic Medical Center, AZUA, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands

Doris Braun,     Institute for Medical Research, Stanford University, 2260 Clove Drive, San Jose, California, USA

Rosa Bruni,     Institute of Human Physiology, Catholic University, Largo F. Vito 1, 00168 Roma, Italy

Roberto Callieco,     Istituto Neurologico C. Mondino, Università di Pavia, Via Palestro 3, 27100 Pavia, Italy

Giuseppe Capocchi,     Institute of Neurology, University of Perugia, Via E. dal Pozzo, 06100 Perugia, Italy

Dennis P. Carmody,     Saint Peter’s College, Psychology Department, 2641 Kennedy Boulevard, Jersey City, NJ 07306, USA

Eugene Chekaluk,     Department of Psychology, University of Wollongong, Wollongong, N.S.W. 2500, Australia

Guy Cheron,     Laboratory of Neurophysiology, Faculty of Medicine, University of Mons-Hainaut, Place du Parc 20, 7000 Mons, Belgium

Antonietta Citterio,     Istituto Neurologico C. Mondino, Università di Pavia, Via Palestro 3, 27100 Pavia, Italy

E. Tinsley Coble,     University of Washington, Department of Physiology & Biophysics, SJ-40, Seattle WA 98195, USA

Ruggero Corazza,     Istituto di Fisiologia Umana, via Campi 287, 41100 Modena, Italy

Vittorio Cosi,     Istituto Neurologico C. Mondino, Università di Pavia, Via Palestro 3, 27100 Pavia, Italy

Trevor J. Crawford,     Department of Neurology, The London Hospital, Whitechapel, London E1 1BB, UK

Stefano Da Pozzo,     Divisione Oculistica, Istituto per l’Infanzia, via dell’Istria 65/1, 34100 Trieste, Italy

Paul Dassonville,     Department of Anatomy and Cell Biology, and Brain Research Institute, UCLA Medical School, 9717 Oak Pass Road, Beverly Hills CA 90120, USA

Claudio De Angelis,     Italian Air Force, D.A.S.R.S. Aerospace Medicine Department, Aeroporto Pratica di Mare, 00040 Pomezia (Rome), Italy

Teresa dell’Aquila,     Dipartimento di Elettrotecnica, Elettronica ed Informatica, via Valerio 10, 34100 Trieste, Italy

Giovannella Della Torre,     Istituto di Fisiologia Umana, Università di Perugia, Via del Giochetto, 06100 Perugia, Italy

Francesco Draicchio,     Catholic University of Rome, Rome, Italy

Jacques Duysens,     Department of Medical Physics & Biophysics, K.U.N., Geert Grooteplein Noord 21, 6500 HB Nijmegen, The Netherlands

Géry d’Ydewalle,     University of Leuven, Department of Psychology, Laboratory of Experimental Psychology, Tiensestraat 102, 3000 Leuven, Belgium

Andrew S. Eadie,     Department of Physical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK

Casper J. Erkelens,     Utrechts Biofysica Instituut, Vakgroep Medische en Fysiologische Fysica, Buys Ballot Laboratorium, Rijksuniversiteit Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands

Pierangelo Errico,     Institute of Human Physiology, Catholic University, Largo F. Vito 1, 00168 Roma, Italy

Stefano Farrace,     Italian Air Force, D.A.S.R.S. Aerospace Medicine Department, Aeroporto Pratica di Mare, 00040 Pomezia (Rome), Italy

Aldo Ferraresi,     Catholic University of Rome, Rome, Italy

Michael Fetter,     Department of Neurology, Eberhard-Karls-University, Hoppe-Seyler Str. 3, D-7400 Tübingen, Germany

John M. Findlay,     Department of Psychology, University of Durham, South Road, Durham DH1 3LE, UK

Burkhart Fischer,     Department of Neurophysiology, University of Freiburg, Hansastr. 9, D-7800 Freiburg, Germany

Frederich Flach,     The New York Hospital, Cornell Medical Center, USA

Albert F. Fuchs,     University of Washington, Department of Physiology & Biophysics, SJ-40, Seattle WA 98195, USA

Henrietta L. Galiana,     Dept. Biomed. Eng., McGill University, Montreal, Canada

Emile Godaux,     Laboratory of Neurophysiology, Faculty of Medicine, University of Mons-Hainaut, Place du Parc 20, 7000 Mons, Belgium

Silvarosa Grassi,     Istituto di Fisiologia Umana, Università di Perugia, Via del Giochetto, 06100 Perugia, Italy

Madeleine A. Grealy,     MRC Human Movement and Balance Unit, Institute of Neurology, 23 Queen Square, London WC1N 3BG, UK

Daniel Guitton,     Montreal Neurological Institute, 3801 University St., Montreal, Quebec, Canada H3A 2B4

Anita E. Harding,     Visuo-Motor Section, MRC Human Movement and Balance...

PDFPDF (Adobe DRM)
Größe: 55,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 10,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99