Processes and Mechanisms of Welding Residual Stress and Distortion -

Processes and Mechanisms of Welding Residual Stress and Distortion (eBook)

Z Feng (Herausgeber)

eBook Download: PDF | EPUB
2005 | 1. Auflage
364 Seiten
Elsevier Science (Verlag)
978-1-84569-093-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
215,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Measurement techniques for characterisation of residual stress and distortion have improved significantly. More importantly the development and application of computational welding mechanics have been phenomenal. Through the collaboration of experts, this book provides a comprehensive treatment of the subject. It develops sufficient theoretical treatments on heat transfer, solid mechanics and materials behaviour that are essential for understanding and determining welding residual stress and distortion. It will outline the approach for computational analysis that engineers with sufficient background can follow and apply. The book is useful for advanced analysis of the subject and provide examples and practical solutions for welding engineers. - A comprehensive summary of developments in this subject - Includes case studies and practical solutions - Compiled by a worldwide panel of experts
Measurement techniques for characterisation of residual stress and distortion have improved significantly. More importantly the development and application of computational welding mechanics have been phenomenal. Through the collaboration of experts, this book provides a comprehensive treatment of the subject. It develops sufficient theoretical treatments on heat transfer, solid mechanics and materials behaviour that are essential for understanding and determining welding residual stress and distortion. It will outline the approach for computational analysis that engineers with sufficient background can follow and apply. The book is useful for advanced analysis of the subject and provide examples and practical solutions for welding engineers. - A comprehensive summary of developments in this subject- Includes case studies and practical solutions- Compiled by a worldwide panel of experts

1

Understanding residual stress and distortion in welds: an overview


C.L. TSAI,     The Ohio State University, USA

D.S. KIM,     Shell Global Solutions (US), USA

Publisher Summary


This chapter presents that one common problem associated with welding is the dimensional tolerance and stability of the finished products. The welding-induced residual stresses in the weldment are sometimes also a concern regarding their effect on the fracture and fatigue behaviors of the welded structures subject to dynamic loading or adverse service environment. Although the inherent shrinkage model has been demonstrated to be accurate, convenient, and cost effective in the prediction of weld residual stresses and distortion, several fundamental issues remain unsolved to date. The inherent shrinkage model needs calibration constants for different applications. Those calibration constants will depend on the thermal characteristics of the welding process and the geometric details of the joint, as well as the jigging constraints. To prescribe the inherent shrinkage strains in the weld joint, the equivalent thermal strains may be defined using the artificial temperature fields. A standard procedure to determine the effective shrinkage strain temperatures will be required. An inherent shrinkage strain database for various production situations, joint designs and welding procedures needs to be developed. The Finite Element Analysis (FEA) modeling, simulation, and analysis procedures can be useful in determining the inherent shrinkage strains.

1.1 Introduction


One common problem associated with welding, which has been realized and documented for many years, is the dimensional tolerance and stability of the finished products. The welding-induced residual stresses in the weldment are sometimes also a concern with respect to their effect on the fracture and fatigue behaviors of the welded structures subject to dynamic loading or adverse service environment.

In making a weld, the heating and cooling cycle always causes shrinkage in both base metal and weld metal, and the shrinkage forces tend to cause a degree of distortion. Machining of a welded product may cause dimensional changes of the product owing to relaxation of weld residual stresses. As a result of welding, the finished product may not be able to perform its intended purpose because of poor fit-up, vibration problems, high reaction stresses, reduced buckling strength, premature cracking or unacceptable appearance. Control of weld residual stresses and distortion is a vital task in welding manufacturing.

Attempts have been made by many researchers since 1930 to understand weld residual stresses and distortion using predictive methodology, parametric experiments or empirical formulations. Attempts have also been made in the last three decades to predict weld residual stresses and distortion through computer simulations of welding process using the finite-element analysis (FEA) method. One significant conclusion from these studies is that the weld residual stresses and distortion are not influenced much by the weld heating cycle but instead occur as a result of shrinkage in the weld metal and its adjacent base metal during cooling when the yield strength and modulus of elasticity of the material are restored to their higher values at lower temperatures. Therefore, analysis of the shrinkage phenomena of welds alone may be sufficiently accurate to predict the state of weld residual stresses and distortion. This conclusion has led to the development of a modeling scheme referred to as the ‘inherent shrinkage model’ by some researchers. The root cause for welding-induced residual stresses and distortion may be described using a plasticity-based hypothesis1.

This chapter will present the following.

1. A summary on the thermal and mechanical evolution process during welding that leads to weld residual stresses and distortion.

2. An explanation of the significance of the shrinkage plastic strains in the formation of weld residual stresses and distortion using simple analogies.

3. An overview of the common issues on analysis approaches predicting weld residual stresses and distortion.

4. A list of references in the analysis of weld residual stresses and distortion.

1.2 Thermal and mechanical processes during welding


In a welded joint, the expansion and contraction forces act on the weld metal and its adjacent base metal. As the weld metal solidifies and fuses with the base metal, it is in its maximum expanded state. However, at this point, the weld metal and its adjacent base metal are at high temperatures and have little strength or rigidity. The volume expansion causes local thickening in the weld area but is incapable of causing a significant amount of plastic strains in the cooler joint neighborhoods. On cooling, it attempts to contract to the volume that it would normally occupy at the lower temperature, but it is restrained from doing so by the adjacent cooler base metal. Stresses develop within the weld, finally reaching the yield strength of the weld metal. At this point the weld stretches, or yields, and thins out, thus adjusting to the volume requirements of the lower temperature, but only those stresses that do not exceed the yield strength of the weld metal, or the elastic mechanical strains, are relieved by this accommodation. In 1960, Blodgett2 properly described this thermal and mechanical evolution process.

The plastic strains accumulated over the welding thermal cycles are primarily compressive and remain in the weldment. By the time that the weld reaches room temperature, the weld will contain locked-in tensile stresses (residual stresses) of yield magnitude and the base metal away from the weld is usually in compression with smaller magnitude. The internal tensile and compressive forces are in equilibrium with the joint deforming to comply with the strain compatibility. The residual stress distributions and the amount of weld distortion depend on the final state of the plastic strain distributions and their compatibility in the joint. Over three decades since 1930, the shrinkage distortion phenomena were studied by Spraragen and Ettinger3, Guyot4, Watanabe and Satoh5 and others.

The welding-induced incompatible inelastic strains in the weldment during the heating and cooling weld cycles include transient thermal strains, cumulative plastic strains and final inherent shrinkage strains. At any instant during welding, the incompatible thermal strains resulting from the nonlinear temperature distributions generate the mechanical strains, which lead to incremental plastic strains in the weldment if yielding occurs. The incremental plastic strains accumulate over the periods of heating and cooling. Upon completion of the welding cycles, the cumulative plastic strains interact with the weldment stiffness and the joint rigidity, resulting in the final state of residual stresses and distortion of the weldment. This final state of the inelastic strains, which are always compressive, is referred to as the ‘inherent shrinkage strains’. Ueda et al.6 first presented this inherent shrinkage concept to predict weld residual stresses and distortion in 1979, followed by many publications demonstrating the numerical procedures for weld residual stresses and distortion prediction using the inherent shrinkage concept710. In 1993–1995, Tsai and coworkers11, 12 used spring elements to describe the inherent shrinkage strains in the numerical simulation and analysis of angular weld distortion of tubular joints in automotive frames.

Welding-induced incompatible plastic strains (assuming a two-dimensional (2D) plane-strain condition for illustration purpose) at each heating or cooling time increment may be described mathematically as follows1:

2(σx+σy)=−E1−2∇2(αθ)−[g(x,y)+Δg(x,y)] [1.1]

[1.1]

where ∇2 is the Laplacian operator, σx and σy are thermal stress components in the respective x and y directions, E is Young’s modulus, V is Poisson’s ratio, α is the thermal expansion coefficient, θ is a temperature function, g(x, y) is a cumulative plastic strain function and Δg(x, y) is the plastic strain increment function over each thermal loading step. The plastic strain functions may be written as follows:

(x,y)=E1−v2(∂2εxpdy2+∂2εyp∂x2−2∂2εxyp∂x∂y)−vE1−v2∇2(εxp+εyp) [1.2]

[1.2]

g(x,y)=E1−v2(∂2(Δεxp)∂y2+∂2(Δεyp)∂x2−2∂2(Δεxyp)∂x∂y)−vE1−v2∇2(Δεxp+Δεyp) [1.3]

[1.3]

The Laplacian thermal strains are governed by the rate of enthalpy change...

Erscheint lt. Verlag 10.10.2005
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Bauwesen
Technik Maschinenbau
Wirtschaft
ISBN-10 1-84569-093-1 / 1845690931
ISBN-13 978-1-84569-093-9 / 9781845690939
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 18,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 19,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich