Mathematical Biophysics (eBook)

eBook Download: PDF
2013 | 2014
XV, 273 Seiten
Springer US (Verlag)
978-1-4614-8702-9 (ISBN)

Lese- und Medienproben

Mathematical Biophysics - Andrew Rubin, Galina Riznichenko
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question 'what new information can be provided by the models that cannot be obtained directly from experimental data?' Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience.


This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "e;what new information can be provided by the models that cannot be obtained directly from experimental data?"e; Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience.

PrefacePart I Basic models in mathematical biophysicsChapter 1 Growth and catalysis modelsUnlimited growth. Exponential growth. Self-catalysis (Auto-catalysis) Limited growth. The Verhulst equationConstraints with respect to substrate. Models of Monod and Michaelis–MentenCompetition. SelectionJacob and Monod trigger systemClassic Lotka and Volterra modelsModels of species interactionsModels of the enzyme catalysisModel of a continuous microorganism cultureAge structured populationsLeslie matricesContinuous models of age structureChapter 2 Oscillations, rhythms and chaos in biological systemsOscillations in glycolysisIntracellular calcium oscillationsDeterministic ChaosChaos in the community of three speciesPeriodic supply of substrate in the system of glycolysisChapter 3 Spatiotemporal self-organization of biological systemsWaves of lifeAutowaves and dissipative structuresBasic model “Brusselator” Localized dissipative structuresBelousov–Zhabotinsky reactionChapter 4 Model of the impact of a weak electric field on the nonlinear system of trans-membrane ion transportTransmembrane ion transport modelBistable modelAuto –oscillating systemPart II Models of complex systemsChapter 5 Oscillations and periodic space structures of pH and electric potential along the cell membrane of algae Chara corallinaKinetic model of the proton ATPase (pump) Equation, describing dynamics of proton concentration in the vicinity of the cellEquation for potential dynamicsOscillations in the local systempH patterns along the cellular membraneDependence of the processes on light intensity. HysteresisScheme of interactions of photosynthesis and ion fluxes leading to the nonlinear dynamicsChapter 6 Models of MorphogenesisTuring instabilityMorphogenetic fieldModel of a distributed triggerAnimal coat markingsModels of amoeba aggregation. The role of chemotaxisChapter 7 Autowave processes, nerve pulse propagation, and heart activityExperiments and model of Hodgkin and HuxleyReduced FitzHugh-Nagumo ModelExcited element of the local systemRunning pulsesDetailed models of cardiomyocytesAxiomatic models of excited medium. Autowave processes and cardiac arrhythmiaChapter 8 Nonlinear models of DNA dynamicsHierarchy of structural and dynamical modelsLinear DNA theorySimple linear model of an elastic barNonlinear models of DNA mobility. Mechanical analogueMathematical model, simulating single DNA base’s nonlinear oscillationsPhysical analogues of real DNA sequencesLong-range effectsNonlinear mechanisms of transcription regulationPart III Kinetic models of photosynthetic processesChapter 9 Models of photosynthetic electron transport. Electron transfer in a multienzyme complexOrganization of processes in photosynthetic membraneKinetic description of redox reactions in solutionModeling electron transfer in a multienzyme complexElectron transfer in a two-component complexElectron transfer in a n-carrier complexElectron transport via mobile carriersElectron transport in an isolated photosynthetic reaction centerChapter 10 Kinetic model of interaction of two photosystemsTypes of regulation of photosynthetic processesModel of PSI and PSII interactionSubsystem PSIIScheme of PSII statesCharge separationSubmodel of PSIDescription of the mobile carrier redox evolutionRelationships between total concentrations of electron carriersModeling of electron transport chain of wild type and mutant Arabidopsys thalianaChapter 11 Detailed model of electron transfer in PSIIFluorescence as an indicator of the state of the photosystemScheme of PSII statesEquations describing processes in PSIIDependence of rate constants on thylakoid transmembrane electric potentialEnergy loss processesExperimentDescription of events in PSII electron transport system after a short light flashChapter 12 Generalized kinetic model of primary photosynthetic processesThe structure of the modelPhotosystem II complexCytochrome b6f complexPhotosystem I complexMobile carriers in the kinetic modelRole of transmembrane electric potentialTransmembrane ion transfer and   generationBuffer properties of lumen and stromaParameter valuesSimulation of fluorescence transients at different light intensitiesThe role of different states of photosystem II in fluorescence inductionSimulation of   kineticsPart IV Direct multiparticle models of processes in subcellular systemsChapter 13 Method of direct multiparticle simulation of protein interactionsRestricted diffusion of mobile electron carriers in photosynthetic membraneDirect model sceneBrownian dynamics of mobile carriersSimulation of cyclic electron transport around photosystem IChapter  14 Modeling of protein complex formation in solution with diffusion and electrostatic interactionsSteps of redox protein interactionsModel of protein-protein interaction in solutionProtein diffusion. Approximation with ellipsoids of revolutionSimulation of geometric shape of proteins and their collisionsElectrostatic interactionsSimulation of complex formationDocking rate constant dependence on ionic strength of solutionComparative analysis of the interaction of Pc with Cyt f and PSI reaction centers in higher plants and cyanobacteria. Role of electrostaticsChapter 15 Modeling of protein interactions in photosynthetic membraneInteraction of Pc with Cyt f in thylakoid lumenModeling of Pc -PSI interaction considering membrane surface charge and multienzyme complexes embedded in the membraneModeling of Pc interaction with cyt f and PSI considering membrane surface charge and multienzyme complexes embedded in the membraneChapter 16 Spaciotemporal evolution of electrochemical potential ΔμH+ in photosynthetic membraneModeling of proton transferModel of proton release into lumenModel of lateral diffusion of protonsProton flow through the ATP-synthase and ATP synthesisComputer simulation of proton gradient evolution and ATP creationConclusionReferencesIndex

Erscheint lt. Verlag 26.11.2013
Reihe/Serie Biological and Medical Physics, Biomedical Engineering
Biological and Medical Physics, Biomedical Engineering
Zusatzinfo XV, 273 p. 150 illus., 43 illus. in color.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik
Schlagworte Autowave processes • Belousov–Zhabotinsky reaction • Biological Systems • Classic Lotka and Volterra models • Direct multiparticle models processes subcellular systems • direct multipatricle simulation of protein interactions • dynamics models • electron transfer in PSII • Generalized kinetic model primary photosynthetic processes • growth and catalysis models • heart activity • Hodgkin and Huxley • Kinetic model ATPase • Kinetic model interaction of two photosystems • Kinetic models photosynthetic processes • Leslie matrices • mathematical biophysics • mathematical biophysics book • mathematical modeling, living systems • Mathematical Models • modeling processes in living systems • Morphogenesis models • Morphogenetic field • nerve pulse propagation • Nonlinear models DNA dynamics • Oscillations periodic space structures, Chara corallina • Oscillations, rhythms and chaos in biological systems • photosynthetic electron transport • protein complex formation solution • protein interactions in photosynthetic membrane • Reduced FitzHugh-Nagumo Model • Spaciotemporal evolution electrochemical potential • Spatiotemporal self-organization of biological systems • subcellular systems • The Verhulst equation • Turing instability
ISBN-10 1-4614-8702-1 / 1461487021
ISBN-13 978-1-4614-8702-9 / 9781461487029
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Sam Treiman

eBook Download (2024)
Princeton University Press (Verlag)
23,99