Bosonic Strings
A Mathematical Treatment
Seiten
2001
American Mathematical Society (Verlag)
978-0-8218-2644-7 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-2644-7 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. This book considers the theory of strings as a quantization of the classical Plateau problem for minimal surfaces. It also presents tools such as the algebraic geometry of Riemann surfaces and infinite-dimensional determinants.
Presented in this book is a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, the author presents the theory of point particles and Feynman path integrals. He considers the theory of strings as a quantization of the classical Plateau problem for minimal surfaces. The conformal variance of the relevant functional, the Polyakov action or (in mathematical terminology) the Dirichlet integral, leads to an anomaly in the process of quantization. The mathematical concepts needed to resolve this anomaly via the Faddeev-Popov method are introduced, specifically the geometry of the Teichmuuller and moduli spaces of Riemann surfaces and the corresponding function spaces, i.e., Hilbert spaces of Sobolev type and diffeomorphism groups.Other useful tools presented in this title are the algebraic geometry of Riemann surfaces and infinite-dimensional determinants. Also discussed here are the boundary regularity questions. The main result is a presentation of the string partition function as an integral over a moduli space of Riemann surfaces. Some new physical concepts, such as D-branes, are also discussed.
This volume offers a mathematically rigorous treatment of some aspects of string theory, employs a global geometry approach, systematically treats strings with boundary, and carefully explains all mathematical concepts and tools.
Presented in this book is a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, the author presents the theory of point particles and Feynman path integrals. He considers the theory of strings as a quantization of the classical Plateau problem for minimal surfaces. The conformal variance of the relevant functional, the Polyakov action or (in mathematical terminology) the Dirichlet integral, leads to an anomaly in the process of quantization. The mathematical concepts needed to resolve this anomaly via the Faddeev-Popov method are introduced, specifically the geometry of the Teichmuuller and moduli spaces of Riemann surfaces and the corresponding function spaces, i.e., Hilbert spaces of Sobolev type and diffeomorphism groups.Other useful tools presented in this title are the algebraic geometry of Riemann surfaces and infinite-dimensional determinants. Also discussed here are the boundary regularity questions. The main result is a presentation of the string partition function as an integral over a moduli space of Riemann surfaces. Some new physical concepts, such as D-branes, are also discussed.
This volume offers a mathematically rigorous treatment of some aspects of string theory, employs a global geometry approach, systematically treats strings with boundary, and carefully explains all mathematical concepts and tools.
Point particles The Bosonic string Bibliography Index.
Erscheint lt. Verlag | 1.6.2001 |
---|---|
Reihe/Serie | AMS/IP Studies in Advanced Mathematics |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 428 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Naturwissenschaften ► Physik / Astronomie ► Relativitätstheorie | |
ISBN-10 | 0-8218-2644-1 / 0821826441 |
ISBN-13 | 978-0-8218-2644-7 / 9780821826447 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €