Finslerian Geometries
Springer (Verlag)
978-94-010-5838-4 (ISBN)
Section I. Pedagogy.- Generalizations of Finsler Geometry.- Finsler Geometry Inspired.- Finsler Geometry.- Section II. Summary and Overview.- Summary and Overview.- Section III. Meeting of Minds.- Some Remarks On the Conformal Equivalence of Complex Finsler Structures.- Deformations of Finsler Metrics.- The Constant Sprays of Classical Ecology and Noisy Finsler Perturbations.- On the Geometry of a Homogeneous Contact Transformation.- On Finsler Spaces of Douglas Type III.- Equations of Motion from Finsler Geometric Methods.- On the Theory of Finsler Submanifolds.- Finslerian Fields.- On the Inverse Problem of the Calculus of Variations for Systems of Second-Order Ordinary Differential Equations.- Complex Finsler Geometry Via the Equivalence Problem on the Tangent Bundle.- Lévy Concentration of Metric Measure Manifolds.- Hypersurfaces in Generalised Lagrange Spaces.- The Notion of Higher Order Finsler Space. Theory and Applications.- Generalized Complex Lagrange Spaces.- Gravity in Finsler Spaces.- Higher Order Ecological Metrics.- Area and Metrical Connections in Finsler Space.- Problem.- Finslerian Convexity and Optimization.- On Projective Transformations and Conformal Transformations of the Tangent Bundles of Riemannian Manifolds.
Reihe/Serie | Fundamental Theories of Physics ; 109 |
---|---|
Zusatzinfo | VIII, 312 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
Naturwissenschaften ► Physik / Astronomie ► Hochenergiephysik / Teilchenphysik | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
ISBN-10 | 94-010-5838-5 / 9401058385 |
ISBN-13 | 978-94-010-5838-4 / 9789401058384 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich