Vertex Operators in Mathematics and Physics
Springer-Verlag New York Inc.
978-1-4613-9552-2 (ISBN)
String models.- to string models and vertex operators.- An introduction to Polyakov’s string model.- Conformally invariant field theories in two dimensions.- Lie algebra representations.- Algebras, lattices and strings.- L-algebras and the Rogers-Ramanujan identities.- Structure of the standard modules for the affine Lie algebra A1(1) in the homogeneous picture.- Standard representations of some affine Lie algebras.- Some applications of vertex operators to Kac-Moody algebras.- On a duality of branching coefficients.- The Monster.- A brief introduction to the finite simple groups.- A Moonshine Module for the Monster.- Integrable systems.- Monodromy, solitons and infinite dimensional Lie algebras.- The Riemann-Hilbert decomposition and the KP hierarchy.- Supersymmetric Yang-Mills fields as an integrable system and connections with other non-linear systems.- Lax pairs, Riemann-Hilbert transforms and affine algebras for hidden symmetries in certain nonlinear field theories.- Massive Kaluza-Klein theories and bound states in Yang-Mills.- Local charge algebras in quantum chiral models and gauge theories.- Supergeometry and Kac-Moody algebras.- The Virasoro algebra.- A proof of the no-ghost theorem using the Kac determinant.- Conformal invariance, unitarity and two dimensional critical exponents.- Vacuum vector representations of the Virasoro algebra.- Classical invariant theory and the Virasoro algebra.
Reihe/Serie | Mathematical Sciences Research Institute Publications ; 3 |
---|---|
Zusatzinfo | XIV, 482 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Operator (Math.) • operators • Physics • Scheitel (Math.) |
ISBN-10 | 1-4613-9552-6 / 1461395526 |
ISBN-13 | 978-1-4613-9552-2 / 9781461395522 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich