Earth′s Climate – The Ocean Atmosphere Interaction V147
Seiten
2013
John Wiley & Sons Inc (Hersteller)
978-1-118-66594-7 (ISBN)
John Wiley & Sons Inc (Hersteller)
978-1-118-66594-7 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 147.
It is more than 30 years since the publication of Jacob Bjerknes' groundbreaking ideas made clear the importance of ocean-atmosphere interaction in the tropics. It is now more than 20 years since the arrival of a massive El Nino in the fall of 1982 set off a cascade of observational and theoretical studies. During the following decades, the climate research community has made exceptional progress in refining our capacity to observe earth's climate and theorize about it, including new satellite-based and in situ monitoring systems and coupled ocean-atmosphere predictive numerical models. Of equal importance. is the expanding scope ofresearch, which now reaches far beyond the Pacific El Nino and includes climate phenomena in other ocean basins. In order to cover the now global context of ocean-atmosphere interaction we have organized this monograph around five principal themes, each introduced by one or more broad overview papers. Theme I covers interaction and climate variability in the Pacific sector, with extensive discussion of El Nino-Southern Oscillation, and with the possible causes and consequences of variability on both shorter and longer timescales. Theme II is devoted to interaction in the Atlantic sector. This basin exhibits complex behavior, reflecting its geographic location between two major zones of convection as well as neighboring the tropical Pacific. Theme III reviews the recent, exciting progress in our understanding of climate variability in the Indian sector. Theme IV addresses the interaction between the tropics and the extratropics, which are linked through the presence of shallow meridional overturning cells in the ocean. Finally, Theme V discusses overarching issues of cross-basin interaction.
It is more than 30 years since the publication of Jacob Bjerknes' groundbreaking ideas made clear the importance of ocean-atmosphere interaction in the tropics. It is now more than 20 years since the arrival of a massive El Nino in the fall of 1982 set off a cascade of observational and theoretical studies. During the following decades, the climate research community has made exceptional progress in refining our capacity to observe earth's climate and theorize about it, including new satellite-based and in situ monitoring systems and coupled ocean-atmosphere predictive numerical models. Of equal importance. is the expanding scope ofresearch, which now reaches far beyond the Pacific El Nino and includes climate phenomena in other ocean basins. In order to cover the now global context of ocean-atmosphere interaction we have organized this monograph around five principal themes, each introduced by one or more broad overview papers. Theme I covers interaction and climate variability in the Pacific sector, with extensive discussion of El Nino-Southern Oscillation, and with the possible causes and consequences of variability on both shorter and longer timescales. Theme II is devoted to interaction in the Atlantic sector. This basin exhibits complex behavior, reflecting its geographic location between two major zones of convection as well as neighboring the tropical Pacific. Theme III reviews the recent, exciting progress in our understanding of climate variability in the Indian sector. Theme IV addresses the interaction between the tropics and the extratropics, which are linked through the presence of shallow meridional overturning cells in the ocean. Finally, Theme V discusses overarching issues of cross-basin interaction.
Chunzai Wang and Shang-Ping Xie are the authors of Earth's Climate: The Ocean-Atmosphere Interaction, published by Wiley.
Erscheint lt. Verlag | 21.3.2013 |
---|---|
Verlagsort | New York |
Sprache | englisch |
Maße | 210 x 271 mm |
Gewicht | 645 g |
Themenwelt | Naturwissenschaften ► Geowissenschaften ► Geophysik |
ISBN-10 | 1-118-66594-5 / 1118665945 |
ISBN-13 | 978-1-118-66594-7 / 9781118665947 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |