Calculus Without Derivatives (eBook)
XX, 524 Seiten
Springer New York (Verlag)
978-1-4614-4538-8 (ISBN)
Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization problems. Whereas most books on this subject focus on a particular theory, this text takes a general approach including all main theories. In order to be self-contained, the book includes three chapters of preliminary material, each of which can be used as an independent course if needed. The first chapter deals with metric properties, variational principles, decrease principles, methods of error bounds, calmness and metric regularity. The second one presents the classical tools of differential calculus and includes a section about the calculus of variations. The third contains a clear exposition of convex analysis.
Jean-Paul Penot is an Emeritus Professor at Université Paris 6. He has taught in Paris, Pau and Canada.
Preface.- 1 Metric and Topological Tools.- 2 Elements of Differential Calculus.- 3 Elements of Convex Analysis.- 4 Elementary and Viscosity Subdifferentials.- 5 Circa-Subdifferentials, Clarke Subdifferentials.- 6 Limiting Subdifferentials.- 7 Graded Subdifferentials, Ioffe Subdifferentials.- References.- Index.
Erscheint lt. Verlag | 12.2.2013 |
---|---|
Reihe/Serie | Graduate Texts in Mathematics |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Naturwissenschaften | |
Technik | |
Schlagworte | Approximation • Calculus of Variations • Clarke subdifferential • coderivative • Convex Analysis • Differential Calculus • Duality • elementary subdifferentials • Error bounds • fuzzy calculus • limiting subdifferential • Mathematical Programming • Newton Method • nonsmooth analysis • normal cone • Optimization • Stability Theory • tangent cone |
ISBN-10 | 1-4614-4538-8 / 1461445388 |
ISBN-13 | 978-1-4614-4538-8 / 9781461445388 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich