Multiple Imputation for Nonresponse in Surveys (eBook)
320 Seiten
John Wiley & Sons (Verlag)
978-0-470-31736-5 (ISBN)
Donald B. Rubin , PhD, is a John L. Loeb Professor of Statistics at Harvard University in Cambridge, MA. He was named 2000-2001 Statistician of the Year by the Chicago Chapter of ASA. His research interests include causal inference in experiments and observational studies, developing and applying statistical models to data in a variety of scientific disciplines, and the application of Bayesian and empirical Bayesian techniques.
Tables and Figures.
Glossary.
1. Introduction.
1.1 Overview.
1.2 Examples of Surveys with Nonresponse.
1.3 Properly Handling Nonresponse.
1.4 Single Imputation.
1.5 Multiple Imputation.
1.6 Numerical Example Using Multiple Imputation.
1.7 Guidance for the Reader.
2. Statistical Background.
2.1 Introduction.
2.2 Variables in the Finite Population.
2.3 Probability Distributions and Related Calculations.
2.4 Probability Specifications for Indicator Variables.
2.5 Probability Specifications for (X,Y).
2.6 Bayesian Inference for a Population Quality.
2.7 Interval Estimation.
2.8 Bayesian Procedures for Constructing Interval Estimates,
Including Significance Levels and Point Estimates.
2.9 Evaluating the Performance of Procedures.
2.10 Similarity of Bayesian and Randomization-Based Inferences
in Many Practical Cases.
3. Underlying Bayesian Theory.
3.1 Introduction and Summary of Repeated-Imputation
Inferences.
3.2 Key Results for Analysis When the Multiple Imputations are
Repeated Draws from the Posterior Distribution of the Missing
Values.
3.3 Inference for Scalar Estimands from a Modest Number of
Repeated Completed-Data Means and Variances.
3.4 Significance Levels for Multicomponent Estimands from a
Modest Number of Repeated Completed-Data Means and
Variance-Covariance Matrices.
3.5 Significance Levels from Repeated Completed-Data
Significance Levels.
3.6 Relating the Completed-Data and Completed-Data Posterior
Distributions When the Sampling Mechanism is Ignorable.
4. Randomization-Based Evaluations.
4.1 Introduction.
4.2 General Conditions for the Randomization-Validity of
Infinite-m Repeated-Imputation Inferences.
4.3Examples of Proper and Improper Imputation Methods in a
Simple Case with Ignorable Nonresponse.
4.4 Further Discussion of Proper Imputation Methods.
4.5 The Asymptotic Distibution of
(&Qmacr;m,Ūm,Bm)
for Proper Imputation Methods.
4.6 Evaluations of Finite-m Inferences with Scalar
Estimands.
4.7 Evaluation of Significance Levels from the Moment-Based
Statistics Dm and &Dtilde;m with
Multicomponent Estimands.
4.8 Evaluation of Significance Levels Based on Repeated
Significance Levels.
5. Procedures with Ignorable Nonresponse.
5.1 Introduction.
5.2 Creating Imputed Values under an Explicit Model.
5.3 Some Explicit Imputation Models with Univariate
YI and Covariates.
5.4 Monotone Patterns of Missingness in Multivariate
YI.
5.5 Missing Social Security Benefits in the Current Population
Survey.
5.6 Beyond Monotone Missingness.
6. Procedures with Nonignorable Nonresponse.
6.1 Introduction.
6.2 Nonignorable Nonresponse with Univariate
YI and No XI.
6.3 Formal Tasks with Nonignorable Nonresponse.
6.4 Illustrating Mixture Modeling Using Educational Testing
Service Data.
6.5 Illustrating Selection Modeling Using CPS Data.
6.6 Extensions to Surveys with Follow-Ups.
6.7 Follow-Up Response in a Survey of Drinking Behavior Among
Men of Retirement Age.
References.
Author Index.
Subject Index.
Appendix I. Report Written for the Social Security
Administration in 1977.
Appendix II. Report Written for the Census Bureau in 1983.
Erscheint lt. Verlag | 4.11.2009 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften | |
Sozialwissenschaften ► Soziologie | |
Technik | |
Schlagworte | Methoden der Daten- u. Stichprobenerhebung • Sozialwissenschaften • Statistics • Statistik • Stichprobe • Survey Research Methods & Sampling |
ISBN-10 | 0-470-31736-1 / 0470317361 |
ISBN-13 | 978-0-470-31736-5 / 9780470317365 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich