Minimum Error Entropy Classification

Buch | Hardcover
XVIII, 262 Seiten
2012 | 2013
Springer Berlin (Verlag)
978-3-642-29028-2 (ISBN)
149,79 inkl. MwSt
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Discusses theoretical results, offers a clustering algorithm using a MEE-like concept, and includes tests, evaluation experiments and comparative applications.

This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals.

Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi-layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE-like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

Luís Silva, anthropologist, is Post-Doctoral research fellow at the Centre for Research in Anthropology, Universidade Nova de Lisboa (CRIA/FCSHUNL), Lisbon, Portugal. His principal research interests include rural dynamics and the anthropology of tourism, focusing specifically on the making of heritage and tourism products in rural areas, as well as on the local impact of tourism and the heritage enterprise.

Introduction.- Continuous Risk Functionals.- MEE with Continuous Errors.- MEE with Discrete Errors.- EE-Inspired Risks.- Applications.

From the reviews:

"The paper deals with the theoretical background and corresponding applications of minimum error entropy (MEE) to different data classifications models ... . Many examples and tests are also provided to illustrate the practical application of MEE in concrete classification problems. The book is dedicated to researchers and practitioners working on machine learning algorithms interested in using MEE in data classification." (Florin Gorunescu, zbMATH, Vol. 1280, 2014)

Erscheint lt. Verlag 25.7.2012
Reihe/Serie Studies in Computational Intelligence
Zusatzinfo XVIII, 262 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 564 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie Mechanik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik
Schlagworte Computational Intelligence • Daten • Fehlererkennung • Fehlererkennung / Troubleshooting • Information theoretic learning • Minimum Error Entropy Classification
ISBN-10 3-642-29028-0 / 3642290280
ISBN-13 978-3-642-29028-2 / 9783642290282
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00