Stable Isotopes as Indicators of Ecological Change -

Stable Isotopes as Indicators of Ecological Change (eBook)

eBook Download: PDF
2011 | 1. Auflage
436 Seiten
Elsevier Science (Verlag)
978-0-08-055100-5 (ISBN)
Systemvoraussetzungen
83,13 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The 20th century has experienced environmental changes that appear to be unprecedented in their rate and magnitude during the Earth's history.
For the first time, this special volume brings together a wide range of perspectives and data that speak directly to the issues of ecological change using stable isotope tracers. The information presented originates from a range of biological and geochemical sources and from research fields within biological, climatological and physical disciplines covering time-scales from days to centuries. Unlike any other reference, editors discuss where isotope data can detect, record, trace and help to interpret environmental change.

* Provides researchers with ground-breaking data on how to predict the terrestrial ecosystems response to the ongoing rapid alterations
* Reveals how ecosystems have responded to environmental and biotic fluctuations in the past
* Includes examples from research by a wide range of biological and physical scientists who are using isotopic records to both detect and interpret environmental change
The 20th century has experienced environmental changes that appear to be unprecedented in their rate and magnitude during the Earth's history. For the first time, Stable Isotopes as Indicators of Ecological Change brings together a wide range of perspectives and data that speak directly to the issues of ecological change using stable isotope tracers. The information presented originates from a range of biological and geochemical sources and from research fields within biological, climatological and physical disciplines covering time-scales from days to centuries. Unlike any other reference, editors discuss where isotope data can detect, record, trace and help to interpret environmental change. - Provides researchers with groundbreaking data on how to predict the terrestrial ecosystems response to the ongoing rapid alterations- Reveals how ecosystems have responded to environmental and biotic fluctuations in the past- Includes examples from research by a wide range of biological and physical scientists who are using isotopic records to both detect and interpret environmental change

Front Cover 1
Stable Isotopes as Indicators of Ecological Change 4
Copyright Page 5
Contents 6
Contributors 10
Acknowledgments 16
Preface 18
Section 1: Ecological Isotope Archives 20
Chapter 1: Using Stable Isotopes as Indicators, Tracers, and Recorders of Ecological Change: Some Context and Background 22
I. Context for Book 22
II. Isotopes as Tracers, Records, and Integrators of Change 23
III. Stable Isotope Notation 24
IV. The Stable Isotope Composition of Materials in Biogeochemical Cycles 26
A. Variation in the delta13C in Carbon Cycle Processes 27
B. Variation in the delta18O, Delta17O, and delta2H in Hydrologic Processes 28
C. Variation in the delta15N in the Nitrogen Cycle Processes 30
D. Variation in the delta34S and 87Sr/86Sr in Mineral Cycle Processes 32
V. Summary 34
VI. Acknowledgments 34
VII. References 35
Chapter 2: Stable Isotopes Record Ecological Change, but a Sampling Network Will be Critical 38
References 42
Section 2: Plant-based Isotope Data as Indicators of Ecological Change 44
Chapter 3: Extracting Climatic Information from Stable Isotopes in Tree Rings 46
I. Introduction 47
A. Fundamentals of the Tree Ring Proxies 47
B. Scope 47
II. Signal Preservation 48
A. Carbon Isotopes 48
B. Oxygen and Hydrogen Isotopes 50
III. Sample Preparation and Analysis 52
A. Site Selection and Sampling 52
B. Sample Preparation 52
C. Isotopic Analysis 54
IV. Replication and Quantification of Signal Strength 55
A. Replication 55
B. Signal Strength 56
V. Nonclimatic Trends 57
A. Age-Related Trends 57
B. Correction for Atmospheric delta13C and CO2 58
VI. Calibration and Mechanistic Modeling 60
A. Laanila, Northern Finland: A Carbon Isotope Case Study 60
B. Climate Reconstruction from Oxygen and Hydrogen Isotopes 62
C. Multiparameter Dendroclimatology 62
VII. Conclusions 63
VIII. Acknowledgments 64
IX. References 64
Chapter 4: Human Impacts on Tree-Ring Growth Reconstructed from Stable Isotopes 68
I. Introduction 68
II. Sites and Sample Preparation 69
III. Isotope Theory 70
IV. Results and Discussion 73
A. delta13C and Water-Use Efficiency 73
B. Combining delta13C and delta18O 75
C. Case Study in Air Pollution Research 77
V. Conclusions and Outlook 79
VI. Acknowledgments 79
VII. References 80
Chapter 5: Oxygen Isotope Proxies in Tree-Ring Cellulose: Tropical Cyclones, Drought, and Climate Oscillations 82
I. Introduction 82
II. A Tree-Ring Isotope Record of Tropical Cyclones and Climate 84
A. Climate Modes Influencing Tropical Cyclone Occurrence 84
B. Isotopic Compositions of Tropical Cyclone Precipitation 84
C. Oxygen Isotope Compositions of Tree-Ring Cellulose 85
III. Materials and Methods 87
IV. Results and Discussion 88
A. Testing the Tree-Ring Isotope Proxy Record of Tropical Cyclone Activity 88
B. A Proxy for Seasonal Drought 90
C. Decadal to Multidecadal Scale Variations in Tree-Ring Oxygen Isotopes 91
V. Conclusions 92
VI. References 92
Chapter 6: The Stable Isotopes delta13C and delta18O of Lichens Can Be Used as Tracers of Microenvironmental Carbon and Water Sources 96
I. Introduction 97
II. Lichen delta13C as Tracer for Carbon Acquisition, Carbon Source, and Global Change 99
A. Physiological Uptake Processes of Carbon 99
B. Morphology and Resistance to CO2 Diffusion 100
C. Carbon Source Influences delta13C in Microhabitats 101
D. Atmospheric Carbon Source Influences Lichen delta13C over Decades 102
III. Oxygen Isotopic Composition of Thallus Water and Respired CO2: A Tracer for Varying Water Sources? 104
A. delta18O Enrichment of Thallus Water and CO2 During Desiccation 104
B. Lichens as Tracers for Water Sources and Their Effect on Soil: Atmosphere Water Exchange 106
IV. Outlook and Conclusions 108
V. Acknowledgment 108
VI. Appendix 108
A. Dehydration Experiment 109
B. Isotopic Analysis of Respired CO2 109
C. Thallus Water Extractions 109
D. Isotopic Analysis of Extracted Thallus Water 109
VII. References 110
Chapter 7: Foliar delta15N Values as Indicators of Foliar Uptake of Atmospheric Nitrogen Pollution 112
I. Introduction 113
II. Nitrogen Sources to Terrestrial Vascular Plants 114
A. Soil Nitrogen Sources 115
B. Atmospheric Nitrogen Sources 116
III. Foliar Assimilation of Atmospheric Nitrogen Pollutants 117
A. Contribution of Foliar Uptake to Total Plant Nitrogen Assimilation 117
B. Variation in Foliar Nitrogen Assimilation Via the Foliar Uptake Pathway 118
IV. Foliar delta15N as a Tool to Determine the Magnitude of Foliar Nitrogen Incorporation 119
V. Current Challenges for using Foliar delta15N as a Tool to Determine the Magnitude of Foliar Nitrogen Incorporation 120
VI. Promising Methods using Foliar delta15N as an Indicator of Direct Leaf Nitrogen Assimilation 120
A. Hydroponics 121
B. Field Studies 123
VII. Future Research 124
VIII. Conclusions 125
IX. References 125
Chapter 8: The Triple Isotopic Composition of Oxygen in Leaf Water and Its Implications for Quantifying Biosphere Productivity 130
I. Introduction 131
II. Mass-Dependent and Mass-Independent Fractionations in the Oxygen Cycle 131
III. Definitions 133
IV. Budget of Triple Isotopes of Oxygen in the Atmosphere and Paleoproductivity 134
V. Experimental 137
VI. Results 137
A. Internal Leaf Variations 138
B. Variations During the Diurnal Cycle 138
C. Variations Among Different Species in the Same Site 138
D. Different Geographic Locations 139
E. The Dependency of lambdatransp on Relative Humidity 139
VII. Discussion 140
A. Implications for the Budget of Triple Isotopes of Oxygen in the Atmosphere 140
B. Quantification of LGM Productivity 141
VIII. Conclusions 142
IX. References 143
Section 3: Animal-Based Isotope Data as Indicators of Ecological Change 146
Chapter 9: An Isotopic Exploration of the Potential of Avian Tissues to Track Changes in Terrestrial and Marine Ecosystems 148
I. Introduction 148
II. The Tissue Issue 149
III. Birds as Indicators 151
IV. Terrestrial Isoscapes 152
A. Deuterium Patterns in Precipitation 153
B. Eggs 154
V. Marine Isoscapes 156
A. Tracing Past Changes in Marine Productivity and Trophic Position 156
VI. Environmental Contaminants 158
VII. Future Prospects 159
VIII. References 160
Chapter 10: Use of the Stable Isotope Composition of Fish Scales for Monitoring Aquatic Ecosystems 164
I. Introduction 165
A. Ocean Climate and Ecosystems 165
II. Archived Scales as Records of Isotopic Change 166
A. Composition and Isotope Chemistry of Scales 166
B. Growth of Scales and Sampling 167
C. Isotope Chemistry of Scales 168
III. Potential Causes of Variation in delta13C and delta15N Values in Scale Collagen 169
A. Controls on delta13C Values in Marine Ecosystems 169
B. Controls on delta15N Values Within Marine Ecosystems 171
IV. Application of Stable Isotope Records of Archived Fish Scales to Study Environmental Change 172
A. Eutrophication in Lakes 172
B. Changes in Terrestrial Versus Marine Carbon Sources in Estuaries 173
C. Long-Term Changes in Marine Fisheries 174
V. Conclusions and Future Directions 177
VI. References 178
Chapter 11: The Reaction Progress Variable and Isotope Turnover in Biological Systems 182
I. Introduction 182
II. Methods 183
III. Results 185
IV. Discussion 187
V. Conclusions 189
VI. References 189
Chapter 12: Insight into the Trophic Ecology of Yellowfin Tuna, Thunnus albacares, from Compound-Specific Nitrogen Isotope Analysis of Proteinaceous Amino Acids 192
I. Introduction 193
II. Oceanographic Setting 194
III. Sample Collection and Analytical Methods 195
A. Samples 195
B. Bulk Isotope Analyses 196
C. Acid Hydrolysis 197
D. Derivatization 198
E. Compound-Specific Isotopic Analyses 198
F. Tuna-Mesozooplankon Comparisons 199
IV. Results and Discussion 199
A. Variation in delta15N Values of WMT 199
B. Variation in the delta15N Values of Amino Acids 200
C. Trophic Level of ETP Yellowfin Tuna 202
V. Implications 204
VI. Summary and Future Research 204
VII. Acknowledments 206
VIII. References 206
Section 4: Isotope Composition of Trace Gasses, Sediments and Biomarkers as Indicators of Change 210
Chapter 13: Temporal Dynamics in delta13C of Ecosystem Respiration in Response to Environmental Changes 212
I. Introduction 213
II. The Dynamics of Mediterranean Ecosystem Productivity and Respiration 214
III. Variations in Ecosystem Respiration (delta13CR) at Different Temporal Scales 217
A. Analysis of delta13C of Ecosystem Respired CO2 Through Keeling Plot Approach 217
B. Annual and Seasonal Variation in delta13CR 218
C. Short-Term Dynamics in delta13CR During Diurnal Cycles 218
D. Responsiveness of delta13CR to Environmental Changes 220
IV. Carbon Isotope Fractionation During Dark Respiration of Plants 222
A. Mechanisms of Carbon Isotope Fractionation During Dark Respiration 222
B. Contribution of Multiple Pools to Nighttime Respiration 224
V. Implications at Larger Temporal and Spatial Scales 225
VI. Acknowledments 226
VII. References 226
Chapter 14: To What Extent Can Ice Core Data Contribute to the Understanding of Plant Ecological Developments of the Past? 230
I. Introduction 230
II. Concentration Records 232
A. The Last 650,000 Years 232
B. The Last Transition and the Holocene 234
C. The Last Millennium 235
D. The Industrial Period 236
E. Direct Atmospheric Measurements 237
III. Relations of CO2 and CH4 Concentration Records to Temperature or Temperature Proxies 237
IV. Carbon Isotope Records 240
A. The Industrial Period 240
V. Correction for the Last 1000 Years 244
VI. Change in Hemispheric Gradient During Industrialization 245
VII. Potential Implications from Growing Season Lengthening 246
VIII. CO2 Fertilization Effect 247
IX. Conclusions 248
X. Acknowledments 249
XI. References 249
Chapter 15: The Global Methane Budget over the Last 2000 Years: 13CH4 Reveals Hidden Information 254
I. Introduction 255
II. Methods 255
A. Materials and Procedures 255
B. Ice Core Integrity 257
III. Carbon Isotopes and the Methane Budget 258
IV. Data 259
V. Discussion 259
A. A New Methane Source? 263
VI. Conclusions 264
VII. References 266
Chapter 16: Compound-Specific Hydrogen Isotope Ratios of Biomarkers: Tracing Climatic Changes in the Past 268
I. Introduction 268
II. Importance of Water and the Water Cycle for the Climate System 269
III. Stable Isotopes of Water and their Variation in the Hydrological Cycle 270
IV. Long-Term Water Cycle Pattern Recorded by Inorganic Molecules 273
V. Long-Term Water Cycle Pattern Recorded by Organic Molecules 275
VI. Compound-Specific Isotope Ratios of Biomarkers Record Recent Climate 276
VII. Compound-Specific Hydrogen Isotope Ratios in Contrasting Ecosystems 277
VIII. The Stability of Compound-Specific Hydrogen Isotope Ratios Over the Geological Past 279
IX. Water Isotopes in Paleoclimate Models 279
X. Conclusions 281
XI. References 281
Chapter 17: Stable Carbon and Oxygen Isotopes in Recent Sediments of Lake Wigry, NE Poland: Implications for Lake Morphometry and Environmental Changes 286
I. Introduction 286
II. Study Site 289
A. Spatial Variability 289
B. Ecological Changes Based on Archival Data 291
III. Sampling Sites and Methods 291
IV. Results 292
V. Discussion 294
VI. Summary and Conclusions 298
VII. References 299
Section 5: Humans, Isotopes and Ecological Change 302
Chapter 18: Stable Isotopes and Human Water Resources: Signals of Change 304
I. Introduction 304
II. Isotope Hydrology of Natural Systems 305
A. Principles 305
B. Processes and Patterns 306
III. Stable Isotope Ratios of Modern Tap Waters 309
A. Spatial Patterns 309
B. Temporal Patterns 312
IV. Water Isotopes and Change 314
A. Reconstructing 314
B. Identifying 315
C. Forecasting 316
V. Conclusions 317
VI. References 317
Chapter 19: The Use of Carbon and Nitrogen Stable Isotopes to Track Effects of Land-Use Changes in the Brazilian Amazon Region 320
I. Introduction 320
II. Stable Isotope Composition of Plants and Soils in the Amazon Region 322
A. Plants 322
B. Soils 326
III. Stable Isotope Composition of Riverine Carbon in the Amazon Region 329
A. Particulate Organic Carbon 329
B. Dissolved Inorganic Carbon 329
IV. Stable Isotope Composition of Respired CO2 332
V. Conclusions 333
VI. References 335
Chapter 20: Reconstruction of Climate and Crop Conditions in the Past Based on the Carbon Isotope Signature of Archaeobotanical Remains 338
I. Overview 339
II. Brief Physiological Background 340
III. The Study of Archaeological Plant Remains: Archaeobotany 340
A. Recovery of Plant Remains 340
B. Dating of Samples 341
IV. Analysis of delta13C in Archaeobotanical Remains: Methodological Aspects 341
A. Removal of Soil Contaminants 341
B. Past Changes in the delta13C of Atmospheric CO2 341
C. Changes in delta13C During Carbonization 342
V. An Insight into the Agronomic Conditions in Ancient Crops: The Isotope Approach 343
A. Case Study: Water Availability of Mediterranean Crops in the Neolithic 344
VI. Past Climate Changes and the Isotope Composition of Wood Charcoal 345
A. Case Study: Evolution of Aridity in the Mid Ebro Basin (NE Spain) 345
B. Sensitivity to Seasonal Climate of Stable Isotopes in Wood: Implications for Paleoenvironmental Studies 346
C. Reinterpreting the "Cold Iron Age Epoch" in the Ebro Basin in the Light of Delta13C Data 348
VII. Concluding Remarks and Future Prospects 348
VIII. Acknowledments 349
IX. References 349
Chapter 21: Change of the Origin of Calcium in Forest Ecosystems in the Twentieth Century Highlighted by Natural Sr Isotopes 352
I. Introduction 352
II. The use of Strontium Isotope Technique 354
III. Separation of Atmospheric and Weathering Sources of Calcium in Forest Ecosystems 355
IV. Exchange Processes in the Soil 356
V. Evolution of the Ca Sources through the Time Highlighted by Tree-Rings Records 357
VI. Perspectives 360
VII. Summary 360
VIII. Acknowledgments 361
IX. References 361
Section 6: New Challenges and Frontiers: Biodiversity, Ecological Change and Stable Isotope Networks 364
Chapter 22: Addressing the Functional Value of Biodiversity for Ecosystem Functioning Using Stable Isotopes 366
I. Introduction 366
II. Niche Complementarity 368
III. Resource Facilitation 372
IV. True Diversity Effects Versus Sampling Effects 374
V. Conclusions and Outlook 376
VI. References 376
Chapter 23: The Future of Large-Scale Stable Isotope Networks 380
I. Introduction 380
II. Large-Scale Isotope Networks 382
A. Atmospheric Gases 382
B. Water 384
C. Other Environmental Archives 386
D. Collaboration Networks 388
III. Information Available From Large-Scale Isotope Networks 389
IV. Relevance to Global Change Policy 392
V. Conclusions and Recommendations 395
VI. Recommendations 396
VII. References 396
Chapter 24: Applications of Stable Isotope Measurements for Early-Warning Detection of Ecological Change 402
I. Introduction 403
II. Addressing Critical Issues in Ecology and Environment with Isotope Measurements 404
A. Imprint of Invasive Species and of Changes in Biodiversity 404
B. Quantifying Source Changes in Hydroecology 405
C. Partitioning Sources and Revealing Processes in Biogeochemical Cycles 405
D. Identifying Geographical Origins of Infectious Diseases and Ecology and Movement of Their Vectors 406
E. Assessing the Impact of Regional Climate Change 406
F. Quantification of Land-Use Change Impacts on Ecological Processes 406
III. Isotope Ratio Measurements for Large-Scale Ecological Monitoring 407
IV. A Conceptual Design for Using Isotopes to Detect Ecological Change at the Continental Scale 409
A. Ecological Change Detected in Atmospheric Inputs 410
B. Ecological Change Detected in Stream Discharge 411
C. Ecological Change Detected in Isotope Ratios of Organisms 412
D. Predictive Models, Visualization, and Forecasting 414
V. Acknowledments 415
VI. References 415
Chapter 25: Stable Isotopes as Indicators, Tracers, and Recorders of Ecological Change: Synthesis and Outlook 418
I. Introduction 418
II. Isotopes in Plants 419
III. Isotopes in Animals 420
IV. Isotopes in Air, Ice Cores, and Sediments 421
V. Human Impacts 422
VI. Emerging Themes and New Frontiers 423
VII. References 424
Index 426

Erscheint lt. Verlag 21.9.2011
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geologie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
ISBN-10 0-08-055100-9 / 0080551009
ISBN-13 978-0-08-055100-5 / 9780080551005
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich