Formulas and Calculations for Drilling, Production and Workover (eBook)
224 Seiten
Elsevier Science (Verlag)
978-0-08-050676-0 (ISBN)
Presented in easy-to-use, step-by-step order, Formulas and Calculations is a quick reference for day-to-day work out on the rig. It also serves as a handy study guide for drilling and well control certification courses. Virtually all the mathematics required out on the drilling rig is here in one convenient source, including formulas for pressure gradient, specific gravity, pump output, annular velocity, buoyancy factor, volume and stroke, slug weight, drill string design, cementing, depth of washout, bulk density of cuttings, and stuck pipe.
The most complete manual of its kind
New updated material includes conversion tables into metric
Example calculations are provided throughout
The most complete manual of its kind, this handy book gives you all the formulas and calculations you are likely to need in drilling operations. New updated material includes conversion tables into metric. Separate chapters deal with calculations for drilling fluids, pressure control, and engineering. Example calculations are provided throughout. Presented in easy-to-use, step-by-step order, Formulas and Calculations is a quick reference for day-to-day work out on the rig. It also serves as a handy study guide for drilling and well control certification courses. Virtually all the mathematics required out on the drilling rig is here in one convenient source, including formulas for pressure gradient, specific gravity, pump output, annular velocity, buoyancy factor, volume and stroke, slug weight, drill string design, cementing, depth of washout, bulk density of cuttings, and stuck pipe.The most complete manual of its kindNew updated material includes conversion tables into metricExample calculations are provided throughout
Cover 1
Formulas and Calculations for Drilling, Production, and Workover 4
Copyright Page 5
CONTENTS 6
PREFACE 8
CHAPTER 1. BASIC FORMULAS 10
Pressure Gradient 10
Hydrostatic Pressure 12
Converting Pressure into Mud Weight 13
Specific Gravity 14
Equivalent Circulating Density 15
Maximum Allowable Mud Weight 16
Pump Output 16
Annular Velocity 18
Capacity Formulas 21
Control Drilling 28
Buoyancy Factor 29
Hydrostatic Pressure Decrease When Pulling Pipe out of the Hole 29
Loss of Overbalance Due to Falling Mud Level 31
Formation Temperature 33
Hydraulic Horsepower 34
Drill Pipe/Drill Collar Calculations 34
Pump Pressure/Pump Stroke Relationship 36
Cost per Foot 37
Temperature Conversion Formulas 38
CHAPTER 2. BASIC CALCULATIONS 40
Volumes and Strokes 40
Slug Calculations 42
Accumulator Capacity 46
Bulk Density of Cuttings 50
Drill String Design (Limitations) 51
Ton-Mile Calculations 53
Cementing Calculations 56
Weighted Cement Calculations 62
Calculations for the Number of Sacks of Cement Required 63
Calculations for the Number of Feet to Be Cemented 66
Setting a Balanced Cement Plug 70
Differential Hydrostatic Pressure Between Cement in the Annulus and Mud Inside the Casing 74
Hydraulicing Casing 75
Depth of a Washout 79
Lost Returns„Loss of Overbalance 80
Stuck Pipe Calculations 81
Calculations Required for Spotting Pills 84
Pressure Required to Break Circulation 88
CHAPTER 3. DRILLING FLUIDS 90
Increase Mud Density 90
Dilution 94
Mixing Fluids of Different Densities 95
Oil-Based Mud Calculations 96
Solids Analysis 100
Solids Fractions 104
Dilution of Mud System 105
Displacement„Barrels of Water/Slurry Required 106
Evaluation of Hydrocyclone 106
Evaluation of Centrifuge 108
CHAPTER 4. PRESSURE CONTROL 112
Kill Sheets and Related Calculations 112
Prerecorded Information 124
Kick Analysis 133
Pressure Analysis 146
Stripping/Snubbing Calculations 148
Subsea Considerations 153
Workover Operations 162
Controlling Gas Migration 166
Gas Lubrication 168
Annular Stripping Procedures 170
CHAPTER 5. ENGINEERING CALCULATIONS 174
Bit Nozzle Selection„Optimized Hydraulics 174
Hydraulics Analysis 178
Critical Annular Velocity and Critical Flow Rate 182
dŽ Exponent 183
Cuttings Slip Velocity 184
Surge and Swab Pressures 188
Equivalent Circulation Density 196
Fracture Gradient Determination„Surface Application 199
Fracture Gradient Determination„Subsea Application 203
Directional Drilling Calculations 206
Miscellaneous Equations and Calculations 212
APPENDIX A 218
APPENDIX B 226
INDEX 230
CHAPTER ONE BASIC FORMULAS
Pressure Gradient
Pressure gradient, psi/ft, using mud weight, ppg
psi/ft = mud weight, ppg × 0.052
Example: 12.0ppg fluid
psi/ft = 12.0ppg × 0.052
psi/ft = 0.624
Pressure gradient, psi/ft, using mud weight, lb/ft3
psi/ft = mud weight, lb/ft3 × 0.006944
Example: 100lb/ft3 fluid
psi/ft = 100lb/ft3 × 0.006944
psi/ft = 0.6944
OR
psi/ft = mud weight, lb/ft3 ÷ 144
Example: 100lb/ft3 fluid
psi/ft = 100lb/ft3 ÷ 144
psi/ft = 0.6944
Pressure gradient, psi/ft, using mud weight, specific gravity (SG)
psi/ft = mud weight, SG × 0.433
Example: 1.0 SG fluid
psi/ft = 1.0SG × 0.433
psi/ft = 0.433
Metric calculations
Pressure gradient, bar/m = drilling fluid density kg/l × 0.0981
Pressure gradient, bar/10m = drilling fluid density kg/l × 0.981
S.I. units calculations
Pressure gradient, kPa/m = drilling fluid density, kg/m3 ÷ 102
Convert pressure gradient, psi/ft, to mud weight, ppg
ppg = pressure gradient, psi/ft ÷ 0.052
Example: 0.4992psi/ft
ppg = 0.4992psi/ft ÷ 0.052
ppg = 9.6
Convert pressure gradient, psi/ft, to mud weight, lb/ft3
lb/ft3 = pressure gradient, psi/ft ÷ 0.006944
Example: 0.6944psi/ft
lb/ft3 = 0.6944psi/ft ÷ 0.006944
lb/ft3 = 100
Convert pressure gradient, psi/ft, to mud weight, SG
SG = pressure gradient, psi/ft ÷ 0.433
Example: 0.433psi/ft
SG = 0.433psi/ft ÷ 0.433
SG = 1.0
Metric calculations
Drilling fluid density, kg/l = pressure gradient, bar/m ÷ 0.0981
Drilling fluid density, kg/l = pressure gradient, bar/10m ÷ 0.981
S.I. units calculations
Drilling fluid density, kg/m3 = pressure gradient, kPa/m × 102
Hydrostatic Pressure (HP)
Hydrostatic pressure using ppg and feet as the units of measure
HP = mud weight, ppg × 0.052 × true vertical depth (TVD), ft
Example:
HP = 13.5ppg × 0.052 × 12,000ft
HP = 8424psi
Hydrostatic pressure, psi, using pressure gradient, psi/ft
HP = psi/ft × true vertical depth, ft
Example:
HP = 0.624psi/ft × 8500ft
HP = 5304psi
Hydrostatic pressure, psi, using mud weight, lb/ft3
HP = mud weight, lb/ft3 × 0.006944 × TVD, ft
Example:
HP = 90lb/ft3 × 0.006944 × 7500ft
HP = 4687psi
Hydrostatic pressure, psi, using meters as unit of depth
HP = mud weight, ppg × 0.052 × TVD, m × 3.281
Example:
HP = 12.2ppg × 0.052 × 3700 × 3.281
HP = 7701psi
Metric calculations
S.I. units calculations
Converting Pressure into Mud Weight
Convert pressure, psi, into mud weight, ppg, using feet as the unit of measure
Mud weight, ppg = pressure, psi ÷ 0.052 ÷ TVD, ft
Example:
Convert pressure, psi, into mud weight, ppg, using meters as the unit of measure
Mud weight, ppg = pressure, psi ÷ 0.052 ÷ TVD, m ÷ 3.281
Example:
Mud wt, ppg = 3583psi ÷ 0.052 ÷ 2000m ÷ 3.281
Metric calculations
S.I. units calculations
Specific Gravity (SG)
Specific gravity using mud weight, ppg
SG = mud weight, ppg ÷ 8.33
Example: 15.0ppg fluid
SG = 15.0ppg ÷ 8.33
SG = 1.8
Specific gravity using pressure gradient, psi/ft
SG = pressure gradient, psi/ft ÷ 0.433
Example: pressure gradient = 0.624psi/ft
SG = 0.624psi/ft ÷ 0.433
SG = 1.44
Specific gravity using mud weight, lb/ft3
SG = mud weight, lb/ft3 ÷ 62.4
Example: mud weight = 120lb/ft3
SG = 120lb/ft3 ÷ 62.4
SG = 1.92
Convert specific gravity to mud weight, ppg
Mud weight, ppg = specific gravity × 8.33
Example: specific gravity = 1.80
Convert specific gravity to pressure gradient, psi/ft
psi/ft = specific gravity × 0.433
Example: specific gravity = 1.44
psi/ft = 1.44 × 0.433
psi/ft = 0.624
Convert specific gravity to mud weight, lb/ft3
lb/ft3 = specific gravity × 62.4
Example: specific gravity = 1.92
lb/ft3 = 1.92 × 62.4
lb/ft3 = 120
Equivalent Circulating Density (ECD), ppg
Metric calculation
S.I. units calculations
Maximum Allowable Mud Weight from Leak-off Test Data
Pump Output (PO)
Triplex Pump
Formula 1
Example: Determine the pump output, bbl/stk, at 100% efficiency for a 7-in. by 12-in. triplex pump:
PO @ 100% = 0.000243 × 72 × 12
PO @100% = 0.142884bbl/stk
Adjust the pump output for 95% efficiency:
Decimal equivalent = 95 ÷ 100 = 0.95
PO @ 95% = 0.142884bbl/stk × 0.95
PO @ 95% = 0.13574bbl/stk
Formula 2
PO, gpm = [3(D2 × 0.7854) S] 0.00411 × SPM
Example: Determine the pump output, gpm, for a 7-in. by 12-in. triplex pump at 80 strokes per minute:
Duplex Pump
Formula 1
Example: Determine the output, bbl/stk, of a 5–1/2in. by 14-in. duplex pump at 100% efficiency. Rod diameter = 2.0in.:
Adjust pump output for 85% efficiency:
Decimal equivalent = 85 ÷ 100 = 0.85
PO @ 85% = 0.128142bbl/stk × 0.85
PO @ 85% = 0.10892bbl/stk
Formula 2
Example: Determine the output, bbl/stk, of a 5–1/2-in. by 14-in. duplex pump @ 100% efficiency. Rod diameter = 2.0in.:
PO @ 100% = 0.000162 × 14 × [2(5.5)2 – 22]
PO @ 100% = 0.000162 × 14 × 56.5
PO @ 100% = 0.128142bbl/stk
Adjust pump output for 85% efficiency:
PO @ 85% = 0.128142bbl/stk × 0.85
PO @ 85% = 0.10892bbl/stk
Metric calculation
Pump output, liter/min = pump output, liter/stk × pump speed, spm
S.I. units calculation
Pump output, m3/min = pump output, liter/stk × pump speed, spm
Annular Velocity (AV)
Annular velocity (AV), ft/min
Formula 1
AV = pump output, bbl/min ÷ annular capacity, bbl/ft
Formula 2
Formula 3
Annular velocity (AV), ft/sec
Metric calculations
Annular velocity, m/min = pump output, liter/min ÷ annular volume, l/m
Annular velocity, m/sec = pump output, liter/min ÷ 60 ÷ annular volume, l/m
S.I. units calculations
Annular velocity, m/min = pump output, m3/min ÷ annular volume, m3/m
Pump output, gpm, required for a desired annular velocity, ft/min
Strokes per minute (SPM) required for a given annular velocity
Capacity Formulas
Annular capacity between casing or hole and drill pipe, tubing, or casing
Annular capacity between casing and multiple strings of tubing
Capacity of tubulars and open hole: drill pipe, drill collars, tubing, casing, hole, and any cylindrical object
Amount of cuttings drilled per foot of hole drilled
Erscheint lt. Verlag | 19.12.2002 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Technik ► Bergbau | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 0-08-050676-3 / 0080506763 |
ISBN-13 | 978-0-08-050676-0 / 9780080506760 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich