Composition, Deep Structure and Evolution of Continents -

Composition, Deep Structure and Evolution of Continents (eBook)

eBook Download: PDF
1999 | 1. Auflage
341 Seiten
Elsevier Science (Verlag)
978-0-08-052945-5 (ISBN)
Systemvoraussetzungen
75,20 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The ensemble of manuscripts presented in this special volume captures the stimulating cross-disciplinary dialogue from the International Symposium on Deep Structure, Composition, and Evolution of Continents, Harvard University, Cambridge, Massachusetts, 15-17 October 1997. It will provide an update on recent research developments and serve as a starting point for research of the many outstanding issues.
After its formation at mid-oceanic spreading centers, oceanic lithosphere cools, thickens, and subsides, until it subducts into the deep mantle beneath convergent margins. As a result of this continuous recycling process oceanic lithosphere is typically less than 200 million years old (the global average is about 80 Myr).
A comprehensive, multi-disciplinary study of continents involves a wide range of length scales: tiny rock samples and diamond inclusions may yield isotope and trace element signatures diagnostic for the formation age and evolution of (parts of) cratons, while geophysical techniques (e.g., seismic and electromagnetic imaging) constrain variations of elastic and conductive properties over length scales ranging from several to many thousand kilometers. Integrating and reconciling this information is far from trivial and, as several papers in this volume document, the relationships between, for instance, formation age and tectonic behavior on the one hand and the seismic signature, heat flow, and petrology on the other may not be uniform but may vary both within as well as between cratons. These observations complicate attempts to determine the variations of one particular observable (e.g., heat flow, lithosphere thickness) as a function of another (e.g., crustal age) on the basis of global data compilations and tectonic regionalizations.
Important conclusions of the work presented here are that (1) continental deformation, for instance shortening, is not restricted to the crust but also involves the lithospheric mantle, (2) the high wavespeed part of continental lithospheric mantle is probably thinner than inferred previously from vertically travelling body waves or form global surface-wave models, and (3) the seismic signature of ancient continents is more complex than expected from a uniform relationship with crustal age.

The ensemble of manuscripts presented in this special volume captures the stimulating cross-disciplinary dialogue from the International Symposium on Deep Structure, Composition, and Evolution of Continents, Harvard University, Cambridge, Massachusetts, 15-17 October 1997. It will provide an update on recent research developments and serve as a starting point for research of the many outstanding issues.After its formation at mid-oceanic spreading centers, oceanic lithosphere cools, thickens, and subsides, until it subducts into the deep mantle beneath convergent margins. As a result of this continuous recycling process oceanic lithosphere is typically less than 200 million years old (the global average is about 80 Myr). A comprehensive, multi-disciplinary study of continents involves a wide range of length scales: tiny rock samples and diamond inclusions may yield isotope and trace element signatures diagnostic for the formation age and evolution of (parts of) cratons, while geophysical techniques (e.g., seismic and electromagnetic imaging) constrain variations of elastic and conductive properties over length scales ranging from several to many thousand kilometers. Integrating and reconciling this information is far from trivial and, as several papers in this volume document, the relationships between, for instance, formation age and tectonic behavior on the one hand and the seismic signature, heat flow, and petrology on the other may not be uniform but may vary both within as well as between cratons. These observations complicate attempts to determine the variations of one particular observable (e.g., heat flow, lithosphere thickness) as a function of another (e.g., crustal age) on the basis of global data compilations and tectonic regionalizations.Important conclusions of the work presented here are that (1) continental deformation, for instance shortening, is not restricted to the crust but also involves the lithospheric mantle; (2) the high wavespeed part of continental lithospheric mantle is probably thinner than inferred previously from vertically travelling body waves or form global surface-wave models; and (3) the seismic signature of ancient continents is more complex than expected from a uniform relationship with crustal age.

Cover 1
Contents 8
Preface 10
Chapter 1. Seismic imaging of lithospheric discontinuities and continental evolution 14
Chapter 2. The deep structure of the Australian continent from surface wave tomography 30
Chapter 3. Velocity structure of the continental upper mantle: evidence from southern Africa 58
Chapter 4. Imaging the continental upper mantle using electromagnetic methods 70
Chapter 5. Heat flow and the structure of Precambrian lithosphere 94
Chapter 6. The thermal structure and thickness of continental roots 106
Chapter 7. Stability and dynamics of the continental tectosphere 128
Chapter 8. The continental tectosphere and Earth's long-wavelength gravity field 148
Chapter 9. The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting 166
Chapter 10. The age of continental roots 184
Chapter 11. Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites 208
Chapter 12. Evidence from mantle xenoliths for relatively thin (–100 km) continental lithosphere below the Phanerozoic crust of southernmost South America 230
Chapter 13. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province 250
Chapter 14. Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Trans- baikalia, eastern Siberia 276
Chapter 15. Growth of subcontinental lithosphere: evidence from repeated dike injections in the Balmuccia Iherzolite massif, Italian Alps 300
Chapter 16. Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths 330
Author index 350
Subject index 352

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich