Linear Algebra, Rational Approximation and Orthogonal Polynomials (eBook)
445 Seiten
Elsevier Science (Verlag)
978-0-08-053552-4 (ISBN)
Links are made with more applied subjects such as linear system theory and signal processing, and with more advanced topics and recent results such as general bi-orthogonal polynomials, minimal Padé, approximation, polynomial root location problems in the complex plane, very general rational interpolation problems, and the lifting scheme for wavelet transform computation. The text serves as a supplement to existing books on structured linear algebra problems, rational approximation and orthogonal polynomials.
Features of this book:
&bull, provides a unifying approach to linear algebra, rational approximation and orthogonal polynomials
&bull, requires an elementary knowledge of calculus and linear algebra yet introduces advanced topics.
The book will be of interest to applied mathematicians and engineers and to students and researchers.
Evolving from an elementary discussion, this book develops the Euclidean algorithm to a very powerful tool to deal with general continued fractions, non-normal Pade tables, look-ahead algorithms for Hankel and Toeplitz matrices, and for Krylov subspace methods. It introduces the basics of fast algorithms for structured problems and shows how they deal with singular situations.Links are made with more applied subjects such as linear system theory and signal processing, and with more advanced topics and recent results such as general bi-orthogonal polynomials, minimal Pade approximation, polynomial root location problems in the complex plane, very general rational interpolation problems, and the lifting scheme for wavelet transform computation. The text serves as a supplement to existing books on structured linear algebra problems, rational approximation and orthogonal polynomials.Features of this book:* provides a unifying approach to linear algebra, rational approximation and orthogonal polynomials* requires an elementary knowledge of calculus and linear algebra yet introduces advanced topics.The book will be of interest to applied mathematicians and engineers and to students and researchers.
Cover 1
Contents 12
Preface 6
List of symbols 16
Chapter 1. Euclidean fugues 20
1.1 The algorithm of Euclid 20
1.2 Euclidean ring and g.c.l.d 22
1.3 Extended Euclidean algorithm 28
1.4 Continued fraction expansions 34
1.5 Approximating formal series 40
1.6 Atomic Euclidean algorithm 51
1.7 Viscovatoff algorithm 56
1.8 Layer peeling vs. layer adjoining methods 71
1.9 Left-Riight duality 73
Chapter 2. Linear algebra of Hankels 80
2.1 Conventions and notations 80
2.2 Hankel matrices 82
2.3 Tridiagonal matrices 93
2.4 Structured Hankel information 100
2.5 Block Gram-Schmidt algorithm 103
2.6 The Schur algorithm 104
2.7 The Viscovatoff algorithm 114
Chapter 3. Lanczos algorithm 118
3.1 Krylov spaces 119
3.2 Biorthogonality 120
3.3 The generic algorithm 123
3.4 The Euclidean Lanczos algorithm 124
3.5 Breakdown 134
3.6 Note of warning 151
Chapter 4. Orthogonal polynomials 154
4.1 Generalities 154
4.2 Orthogonal polynomials 157
4.3 Properties 168
4.4 Hessenberg matrices 170
4.5 Schur algorithm 174
4.6 Rational approximation 178
4.7 Generalization of Lanczos algorithm 185
4.8 The Hankel case 188
4.9 Toeplitz case 197
4.10 Formal orthogonality on an algebraic curve 245
Chapter 5. Pade approximation 250
5.1 Definitions and terminology 251
5.2 Computation of diagonal PAs 254
5.3 Computation of antidiagonal PAs 260
5.4 Computation of staircase PAs 267
5.5 Minimal indices 269
5.6 Minimal Padé approximation 273
5.7 The Massey algorithm 284
Chapter 6. Linear systems 290
6.1 Definitions 291
6.2 More definitions and properties 306
6.3 The minimal partial realization problem 311
6.4 Interpretation of the Padé results 317
6.5 The mixed problem 319
6.6 Interpretation of the Toeplitz results 323
6.7 Stability checks 325
Chapter 7. General rational interpolation 370
7.1 General framework 370
7.2 Elementary updating and downdating steps 379
7.3 A general recurrence step 384
7.4 Padé approximation 385
7.5 Other applications 399
Chapter 8. Wavelets 404
8.1 Interpolating subdivisions 404
8.2 Multiresolution 409
8.3 Wavelet transforms 414
8.4 The lifting scheme 417
8.5 Polynomial formulation 421
8.6 Euclidean domain of Laurent polynomials 426
8.7 Factorization algorithm 428
Bibliography 432
List of Algorithms 454
Index 455
Erscheint lt. Verlag | 17.11.1997 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Computerprogramme / Computeralgebra | |
Naturwissenschaften | |
Technik | |
ISBN-10 | 0-08-053552-6 / 0080535526 |
ISBN-13 | 978-0-08-053552-4 / 9780080535524 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich