Information Criteria and Statistical Modeling (eBook)

eBook Download: PDF
2007 | 2008
XII, 276 Seiten
Springer New York (Verlag)
978-0-387-71887-3 (ISBN)

Lese- und Medienproben

Information Criteria and Statistical Modeling - Sadanori Konishi, Genshiro Kitagawa
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It's a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They're also used to control such systems, as well as to make reliable predictions in various natural and social science fields.


The Akaike information criterion (AIC) derived as an estimator of the Kullback-Leibler information discrepancy provides a useful tool for evaluating statistical models, and numerous successful applications of the AIC have been reported in various fields of natural sciences, social sciences and engineering.One of the main objectives of this book is to provide comprehensive explanations of the concepts and derivations of the AIC and related criteria, including Schwarz s Bayesian information criterion (BIC), together with a wide range of practical examples of model selection and evaluation criteria. A secondary objective is to provide a theoretical basis for the analysis and extension of information criteria via a statistical functional approach. A generalized information criterion (GIC) and a bootstrap information criterion are presented, which provide unified tools for modeling and model evaluation for a diverse range of models, including various types of nonlinear models and model estimation procedures such as robust estimation, the maximum penalized likelihood method and a Bayesian approach.

Preface 6
Contents 9
1 Concept of Statistical Modeling 13
1.1 Role of Statistical Models 13
1.2 Constructing Statistical Models 16
1.3 Organization of This Book 19
2 Statistical Models 21
2.1 Modeling of Probabilistic Events and Statistical Models 21
2.2 Probability Distribution Models 22
2.3 Conditional Distribution Models 29
3 Information Criterion 41
3.1 Kullback–Leibler Information 41
3.2 Expected Log-Likelihood and Corresponding Estimator 47
3.3 Maximum Likelihood Method and Maximum Likelihood Estimators 49
3.4 Information Criterion AIC 63

4 Statistical Modeling by AIC 87
4.1 Checking the Equality of Two Discrete Distributions 87
4.2 Determining the Bin Size of a Histogram 89
4.3 Equality of the Means and/or the Variances of Normal Distributions 91
4.4 Variable Selection for Regression Model 96
4.5 Generalized Linear Models 100
4.6 Selection of Order of Autoregressive Model 104
4.7 Detection of Structural Changes 108
4.8 Comparison of Shapes of Distributions 113
4.9 Selection of Box–Cox Transformations 116
5 Generalized Information Criterion (GIC) 119
5.1 Approach Based on Statistical Functionals 119
5.2 Generalized Information Criterion (GIC) 130
6 Statistical Modeling by GIC 151
6.1 Nonlinear Regression Modeling via Basis Expansions 151
6.2 Basis Functions 155
6.3 Logistic Regression Models for Discrete Data 161
6.4 Logistic Discriminant Analysis 168
6.5 Penalized Least Squares Methods 172
6.6 Effective Number of Parameters 174
7 Theoretical Development and Asymptotic Properties of the GIC 178
7.1 Derivation of the GIC 178
7.2 Asymptotic Properties and Higher-Order Bias Correction 187
8 Bootstrap Information Criterion 197
8.1 Bootstrap Method 197
8.2 Bootstrap Information Criterion 202
8.3 Variance Reduction Method 205
8.4 Applications of Bootstrap Information Criterion 216
9 Bayesian Information Criteria 220
9.1 Bayesian Model Evaluation Criterion (BIC) 220
9.2 Akaike’s Bayesian Information Criterion (ABIC) 231
9.3 Bayesian Predictive Distributions 233
9.4 Bayesian Predictive Distributions by Laplace Approximation 240
9.5 Deviance Information Criterion (DIC) 245
10 Various Model Evaluation Criteria 247
10.1 Cross-Validation 247
10.2 Final Prediction Error (FPE) 255
10.3 Mallows’ Cp 259
10.4 Hannan–Quinn’s Criterion 261
10.5 ICOMP 262
References 263
Index 276

Erscheint lt. Verlag 12.9.2007
Reihe/Serie Springer Series in Statistics
Springer Series in Statistics
Zusatzinfo XII, 276 p.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Kryptologie
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften
Technik
Schlagworte Akaike information criterion • Bayesian approach • Bioinformatics • Computer • Computer Science • Estimator • Information • likelihood • Modeling • model selection and evaluation • Nonlinear modeling • statistical modeling • Statistical Models
ISBN-10 0-387-71887-7 / 0387718877
ISBN-13 978-0-387-71887-3 / 9780387718873
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99