Applications of Polyhedral Oligomeric Silsesquioxanes (eBook)

Claire Hartmann-Thompson (Herausgeber)

eBook Download: PDF
2011 | 2011
XXVII, 420 Seiten
Springer Netherland (Verlag)
978-90-481-3787-9 (ISBN)

Lese- und Medienproben

Applications of Polyhedral Oligomeric Silsesquioxanes -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The commercial availability and decreasing cost of polyhedral oligomeric silsesquioxanes in recent years has opened up the field to everybody who wishes to apply these unique properties in their own technologies. This is the first book to provide a comprehensive overview of these applications, and covers the synthesis, characterization and history of polyhedral oligomeric silsesquioxanes, their use as metallasilsesquioxane catalysts, their effect upon polymer properties and plastics performance, and their use in superhydrophobic nanocomposites, and electronics, energy, space and biomedical applications.

'Applications of Polyhedral Oligomeric Silsesquioxanes' is a valuable reference for those working across a range of disciplines, including chemists, materials scientists, polymer physicists, plastics engineers, surface scientists, and anybody with a commercial or academic interest in plastics, composite materials, space materials, dental materials, tissue engineering, drug delivery, lithography, fuel cells, batteries, lubricants, or liquid crystal, LED, sensor, photovoltaic or biomedical devices.


The commercial availability and decreasing cost of polyhedral oligomeric silsesquioxanes in recent years has opened up the field to everybody who wishes to apply these unique properties in their own technologies. This is the first book to provide a comprehensive overview of these applications, and covers the synthesis, characterization and history of polyhedral oligomeric silsesquioxanes, their use as metallasilsesquioxane catalysts, their effect upon polymer properties and plastics performance, and their use in superhydrophobic nanocomposites, and electronics, energy, space and biomedical applications."e;Applications of Polyhedral Oligomeric Silsesquioxanes"e; is a valuable reference for those working across a range of disciplines, including chemists, materials scientists, polymer physicists, plastics engineers, surface scientists, and anybody with a commercial or academic interest in plastics, composite materials, space materials, dental materials, tissue engineering, drug delivery, lithography, fuel cells, batteries, lubricants, or liquid crystal, LED, sensor, photovoltaic or biomedical devices.

Foreword: The Re-Birth of PolyhedralOligosilsesquioxane Chemistry 5
Preface 11
Biographical Note 14
Contents 15
Contributors 23
Chapter 1 Polyhedral Oligomeric Silsesquioxanes: From Early and Strategic Development through to Materials Application 26
1.1 Introduction 26
1.2 Early Synthesis of Polyhedral Oligosilsesquioxanes (POS) 29
1.3 Hydrolysis and Condensation in Making Oligosilsesquioxanes 30
1.4 Synthesis of Hydridooctasilsesquioxane, H8Si8O12 (T8H8) and Octakis-(Hydridodimethylsiloxy)Octasilsesquioxane, [H(CH3)2SiO]8Si8O12 (Q8M8H8) 33
1.5 Hydrosilylation 35
1.6 Octa-Functionalized POS Macromonomers 36
1.6.1 Macromonomers Derived by the Hydrosilylation of Octahydridosilsesquioxane (H8Si8O12 T8 H )36
1.6.2 Macromonomers Derived by the Hydrosilylation of Octa(Hydridodimethylsiloxy)Octasilsesquioxane[(HSiMe2O)8Si8O12 (Q8M8H8)]38
1.7 Organic-Inorganic Hybrid Materials Prepared from POS: Octasilsesquioxanecontaining Polymers 40
1.7.1 Hybrid Organic-Inorganic Crosslinked Materials Containing POS 40
1.7.2 Star-Shaped Hybrid Organic-Inorganic Materials Containing POS as a Macroinitiator 43
1.8 Mono-Substituted Polyhedral Oligomeric Silsesquioxane Macromonomers 45
1.8.1 Synthesis of Mono-Substituted Silsesquioxanes by Hydrolysis of Trifunctional Silanes 46
1.8.2 Synthesis of Mono-Substituted Silsesquioxanes by Hydrosilylation 47
1.8.3 Synthesis of Mono-Substituted Silsesquioxanes by Corner-Capping Reactions 49
1.9 Chemistry of Incompletely Condensed Silsesquioxanes 50
1.9.1 Synthesis of Incompletely Condensed Silsesquioxanes 51
1.9.2 Chemistry of Incompletely Condensed Silsesquioxanes 56
1.9.3 Hybrid Organic-Inorganic Materials Derived from Mono-Substituted POS Monomers 57
1.10 Summary 61
1.11 References 62
Chapter 2 Preparation and Characterization of Polyhedral Oligosilsesquioxanes 72
2.1 General Comments 72
2.2 Synthesis of TnRn Compounds where R = H, Alkyl or Alkenyl 73
2.2.1 Hydrolysis 73
2.2.1.1 T4 and T6 Compounds 73
2.2.1.2 T8 Compounds 74
2.2.1.3 T10, T12 and Larger Compounds 76
2.2.2 Substitution 76
2.2.3 Cage Rearrangement 78
2.2.4 Modification of R 79
2.2.4.1 T8 Compounds 79
2.2.4.2 T10 and T12 Compounds 84
2.2.5 Other Synthetic Methods 84
2.2.5.1 T6 Compounds 84
2.2.5.2 T8 Compounds 85
2.2.5.3 T10 and T12 Compounds 85
2.3 Synthesis of TnRn Compounds where R = Aryl 86
2.3.1 Hydrolysis 86
2.3.1.1 T8 Compounds 86
2.3.1.2 T10 and T12 Compounds 87
2.3.2 Modification of R 87
2.3.2.1 T8 Compounds 87
2.3.2.2 T10 and T12 Compounds 90
2.3.3 Other Synthetic Methods 90
2.4 Synthesis of Tn Rn Compounds where R =Alkoxy 91
2.5 Synthesis of TnRn Compounds whereR = Siloxy 91
2.5.1 Corner Capping 91
2.5.2 Substitution 91
2.5.2.1 T8 Compounds 91
2.5.2.2 T10, T12, and T14 Compounds 92
2.5.3 Modification of R 92
2.5.3.1 T6 Compounds 92
2.5.3.2 T8 Compounds 92
2.5.3.3 T10 Compounds 95
2.6 Synthesis of TnRn Compounds where R = Metal Complex 95
2.6.1 Hydrolysis 95
2.6.2 Substitution 96
2.6.2.1 T8 Compounds 96
2.6.2.2 T10 Compounds 96
2.6.3 Modification of R 96
2.7 Synthesis of Miscellaneous TnRn Compounds 99
2.7.1 Hydrolysis 99
2.7.1.1 T6 Compounds 99
2.7.1.2 T8 Compounds 99
2.7.1.3 T10 Compounds 100
2.7.2 Co-Hydrolysis 100
2.7.3 Substitution and Modification of Functional Groups 101
2.7.4 Other Synthetic Methods 101
2.7.4.1 T4 Compounds 101
2.7.4.2 T8 Compounds 101
2.7.4.3 T10 Compounds 102
2.8 Synthesis of Endohedral T8R8 Compounds 102
2.9 Introduction to the Physical Properties of POS Compounds 103
2.10 NMR and EPR Spectroscopy of POS Compounds 103
2.10.1 Solution 29Si NMR Studies 103
2.10.2 Solid State NMR Studies 108
2.10.3 EPR Spectra 110
2.11 Vibrational Spectra of Polyhedral Oligomeric Silsesquioxane Compounds 110
2.12 Mass Spectra of POS Compounds 113
2.13 Electronic Spectra of POS Compounds 115
2.14 Structural Studies of POS Compounds 116
2.14.1 Single Crystal X-Ray Diffraction Studies 116
2.14.2 Structures Derived from Computational and Gas-Phase Electron Diffraction Studies 120
2.14.3 X-ray Diffraction Studies on Powders, Thin Films, etc. 121
2.14.3.1 T8R8 Compounds 122
2.14.3.2 T8R7R’ Compounds 123
2.15 TGA, DSC and Related Studies of POS Compounds 124
2.15.1 T8R8 Compounds (R = H, Alkyl, Vinyl, Aryl or Silyl Derivatives) 124
2.15.2 T8R8 Compounds (R = Siloxy Derivatives) 125
2.15.3 T8R7R’ Compounds 126
2.16 Microscopy Studies of T8 POS Compounds 127
2.16.1 T8R8 Compounds 127
2.16.2 T8R7R’ Compounds 127
2.17 X-Ray Photoelectron Spectra of POS Compounds 128
2.18 Electrochemistry of POS Compounds 128
2.19 Chromatographic Methods Applied to POS Compounds 129
2.20 Miscellaneous Physical Properties of POS Compounds 130
2.21 Acknowledgments 131
2.22 References 131
Chapter 3 Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts 159
3.1 Introduction 159
3.2 Metallasilsesquioxanes 160
3.2.1 Group 4 – Ti, Zr, Hf 160
3.2.2 Group 5 – V 169
3.2.3 Group 6 – Mo 171
3.2.4 Group 8 – Fe 172
3.2.5 Group 12 – Zn 173
3.2.6 Group 13 – Al 174
3.2.7 Group 14 – Si 175
3.2.8 Lanthanides – Nd 177
3.2.9 Hetero-bimetallic Systems 178
3.3 Phosphasilsesquioxanes as Ligands 180
3.4 Catalytic Materials Derived From Metalla-Silsesquioxanes 183
3.5 Conclusions and Future Prospects 186
3.6 References 187
Chapter 4 Polymers and Copolymers Containing Covalently Bonded Polyhedral Oligomeric Silsesquioxanes Moieties 191
4.1 Introduction 191
4.2 Synthetic Strategies 192
4.2.1 Free Radical Polymerization 192
4.2.2 Living Radical Polymerization (ATRP, RAFT and NMP) 193
4.2.3 Anionic Polymerization 196
4.2.4 Ring-Opening Metathesis Polymerization (ROMP) 196
4.2.5 Metallocene-Catalyzed Polymerization 198
4.2.6 Step-Growth Polymerization 199
4.2.7 Grafting 204
4.3 POS Pendant-Random Copolymers 206
4.3.1 Glass Transition Temperature 206
4.3.2 Mechanical Properties 207
4.3.3 Crystallinity in POS Pendant-Random Copolymers 207
4.4 POS Pendant-Block Copolymers 210
4.4.1 Diblocks 210
4.4.2 Triblocks 212
4.4.3 Hemitelechelic (‘Tadpole’-Shaped) Polymers 213
4.4.4 Telechelic (Dumbbell-Shaped) Polymers 215
4.5 POS-Polyimide and POS-Urethanes 216
4.5.1 POS-Polyimide 216
4.5.2 POS-Urethane 217
4.6 Multifunctional POS in Network or Core Structures 219
4.6.1 Epoxy Networks 219
4.6.2 Other POS Networks 220
4.6.3 POS Star or Core Structures 222
4.7 Conclusion 223
4.8 References 224
Chapter 5 Polyhedral Oligomeric Silsesquioxanes in Plastics 232
5.1 Introduction 232
5.2 POS are Molecules 233
5.3 POS as Plastics Additives 236
5.4 POS Solubility 237
5.5 Effects of POS on Polymer Properties 237
5.5.1 POS Solubilized in the Polymer 238
5.5.2 POS Insoluble Present at Concentrations Above the Solubility Limit 239
5.5.3 POS Chemically Attached to the Polymer 240
5.5.4 POS Network Thermosets 241
5.6 POS Dispersants 242
5.7 POS Metal Deactivators 246
5.8 New Applications and the Future 247
5.9 Conclusions 248
5.10 References 248
Chapter 6 Fluorinated Polyhedral Oligosilsesquioxane Surfaces and Superhydrophobicity 252
6.1 Introduction 252
6.2 Experimental 254
6.2.1 Materials 254
6.2.2 Single Crystal X-Ray Structural Characterization 254
6.2.3 Fluorinated POS Coating and Composite Preparation 255
6.2.3.1 Spin Cast Fluorinated POS Coating 255
6.2.3.2 Fluorinated POS Solvent Blended Composites with 6F-BP PFCB Aryl Ether Polymer 255
6.2.3.3 Fluorinated POS Melt Blended PCTFE 255
6.2.4 Thermo-Mechanical Analysis 256
6.2.5 Microscopy 256
6.2.5.1 Atomic Force Microscopy (AFM) 256
6.2.5.2 Scanning Electron Microscopy (SEM) 256
6.2.6 Static and Dynamic Contact Angle 257
6.3 Results and Discussion 257
6.3.1 Fluorinated POS Synthesis 257
6.3.2 Fluorinated POS Properties 258
6.3.3 POS Fluoropolymers 261
6.3.3.1 Dispersion 261
6.3.3.2 Melt Processability 264
6.3.3.3 Thermo-Mechanical Analysis 265
6.3.3.4 Surface Properties 266
6.4 Conclusions 267
6.5 Acknowledgments 268
6.6 References 268
Chapter 7 Polyhedral Oligomeric Silsesquioxanes in Electronics and Energy Applications 270
Introduction 270
7.1 Polyhedral Oligomeric Silsesquioxanes in Liquid Crystal Systems 270
7.2 Polyhedral Oligomeric Silsesquioxanes in Electroluminescent (EL) Materials and Light Emitting Devices (LEDs) 284
7.2.1 Polyhedral Oligomeric Silsesquioxane End-capped EL Polymers 286
7.2.2 EL Polymers with Pendant Polyhedral Oligomeric Silsesquioxane Groups 287
7.2.3 EL Star Architectures with Polyhedral Oligomeric Silsesquioxane Cores 289
7.2.4 Polyhedral Oligomeric Silsesquioxane Iridium Complexes 293
7.2.5 Physical Blending of Polyhedral Oligomeric Silsesquioxanes into EL Polymers 296
7.3 Polyhedral Oligomeric Silsesquioxanes in Non-linear Optic (NLO), Optical Limiting (OL) and Laser Applications 297
7.4 Polyhedral Oligomeric Silsesquioxanes in Lithographic Applications 299
7.5 Polyhedral Oligomeric Silsesquioxanes in Sensor Systems 305
7.5.1 Fluorophore-Functionalized Polyhedral Oligomeric Silsesquioxanes as Sensors 306
7.5.2 Polyhedral Oligomeric Silsesquioxane Sensors for Gas and Vapor Detection 311
7.5.3 Polyhedral Oligomeric Silsesquioxanes in Conducting Composite and Electrochemical Sensors 315
7.6 Polyhedral Oligomeric Silsesquioxanes in Fuel Cell Applications 318
7.7 Polyhedral Oligomeric Silsesquioxanes in Battery Applications 327
7.8 Polyhedral Oligomeric Silsesquioxanes as Lubricants 331
7.9 References 332
Chapter 8 Polyhedral Oligomeric Silsesquioxanes in Space Applications 349
8.1 The Space Environment 349
8.2 Resistance of Siloxane Copolymers to Atomic Oxygen in Low Earth Orbit 352
8.3 Polyhedral Oligomeric Silsesquioxanes in Space Solar Power Systems 363
8.4 Summary 379
8.5 References 380
Chapter 9 Biomedical Application of Polyhedral Oligomeric Silsesquioxane Nanoparticles 384
9.1 Introduction 384
9.2 Nanocomposites 385
9.3 Polyhedral Oligomeric Silsesquioxanes 386
9.4 Biomedical Applications of Polyhedral Oligomeric Silsesquioxane-Containing Polymers 389
9.4.1 Drug Delivery 389
9.4.2 Dental Nanocomposites 392
9.4.3 Biosensors 394
9.4.4 Cardiovascular Implants 395
9.4.4.1 Mechanical Properties 397
9.4.4.2 Degradative Resistance 398
9.4.4.3 Biocompatibility and Biostability 399
9.4.4.4 Endothelialization Property 400
9.4.4.5 Anti-Thrombogenic Potential 403
9.4.4.6 Resistance to Calcifi cation and Fatigue 403
9.4.4.7 Reduced In Vitro Infl ammatory Response 404
9.4.5 Breast Implants 405
9.4.6 Coating Material for Quantum Dot Nanocrystals 406
9.4.7 Silver Nanoparticle-Containing Polyhedral Oligosilsesquioxane Polymers 408
9.4.8 Tissue Engineering 409
9.5 Other Applications 413
9.6 Future Prospects 413
9.7 References 414
Index 421
Abbreviations 434

Erscheint lt. Verlag 3.1.2011
Reihe/Serie Advances in Silicon Science
Advances in Silicon Science
Zusatzinfo XXVII, 420 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Chemie Organische Chemie
Technik Maschinenbau
Schlagworte nanomaterials • Polyhedral Oligosilsesquioxanes • POSS
ISBN-10 90-481-3787-X / 904813787X
ISBN-13 978-90-481-3787-9 / 9789048137879
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95