Mössbauer Spectroscopy and Transition Metal Chemistry (eBook)

Fundamentals and Applications
eBook Download: PDF
2010 | 2011
XV, 569 Seiten
Springer Berlin (Verlag)
978-3-540-88428-6 (ISBN)

Lese- und Medienproben

Mössbauer Spectroscopy and Transition Metal Chemistry - Philipp Gütlich, Eckhard Bill, Alfred X. Trautwein
Systemvoraussetzungen
298,53 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
  • concentrates on teaching techniques using as much theory as needed.
  • application of the techniques to many problems of materials characterization.

Mössbauer spectroscopy is a profound analytical method which has nevertheless continued to develop. The authors now present a state-of-the art book which consists of two parts. The first part details the fundamentals of Mössbauer spectroscopy and is based on a book published in 1978 in the Springer series 'Inorganic Chemistry Concepts' by P. Gütlich, R. Link and A.X. Trautwein.

The second part covers useful practical aspects of measurements, and the application of the techniques to many problems of materials characterization. The update includes the use of synchroton radiation and many instructive and illustrative examples in fields such as solid state chemistry, biology and physics, materials and the geosciences, as well as industrial applications.  Special chapters on magnetic relaxation phenomena (S. Morup) and computation of hyperfine interaction parameters (F. Neese) are also included.

The book concentrates on teaching the technique using theory as much as needed and as little as possible. The reader will learn the fundamentals of the technique and how to apply it to many problems of materials characterization. Transition metal chemistry, studied on the basis of the most widely used Mössbauer isotopes, will be in the foreground.

Mössbauer Spectroscopy and Transition Metal Chemistry 3
Fundamentals and Applications 3
Preface 5
Contents 9
Chapter 1: Introduction 17
References 19
Chapter 2: Basic Physical Concepts 22
2.1 Nuclear gamma-Resonance 22
2.2 Natural Line Width and Spectral Line Shape 24
2.3 Recoil Energy Loss in Free Atoms and Thermal Broadening of Transition Lines 25
2.4 Recoil-Free Emission and Absorption 28
2.5 The Mössbauer Experiment 32
2.6 The Mössbauer Transmission Spectrum 33
2.6.1 The Line Shape for Thin Absorbers 36
2.6.2 Saturation for Thick Absorbers 38
References 39
Chapter 3: Experimental 40
3.1 The Mössbauer Spectrometer 40
3.1.1 The Mössbauer Drive System 42
3.1.1.1 Setup and Function 42
3.1.1.2 Tuning the Drive Performance 43
3.1.2 Recording the Mössbauer Spectrum 44
3.1.2.1 ``Folding´´ of Raw Spectra 45
3.1.3 Velocity Calibration 46
3.1.3.1 Velocity Range and Calibration Factor 46
3.1.3.2 Velocity Zero and Isomer Shift References 47
3.1.3.3 Laser Calibration 48
3.1.4 The Mössbauer Light Source 49
3.1.5 Pulse Height Analysis: Discrimination of Photons 50
3.1.5.1 Tuning the SCA 51
3.1.6 Mössbauer Detectors 52
3.1.6.1 Proportional Counters 52
3.1.6.2 Other gamma-Detectors 53
3.1.6.3 Detectors for Conversion Electrons and Scattered Radiation 54
3.1.6.4 Limits of Counter Resolution 56
3.1.7 Accessory Cryostats and Magnets 56
3.1.8 Geometry Effects and Source-Absorber Distance 58
3.2 Preparation of Mössbauer Sources and Absorbers 60
3.2.1 Sample Preparation 61
3.2.1.1 Basic Considerations 61
3.2.1.2 Counting Statistics and Acquisition Time 62
3.2.1.3 Minimal Thickness of a Mössbauer Sample 63
3.2.2 Absorber Optimization: Mass Absorption and Thickness 64
3.2.2.1 Mass Absorption Coefficients 65
3.2.2.2 Solvents, Solutions, and Powders 66
3.2.2.3 Isotope Enrichment 67
3.2.3 Absorber Temperature 67
3.3 The Miniaturized Spectrometer MIMOS II 68
3.3.1 Introduction 68
3.3.2 Design Overview 69
3.3.2.1 Mössbauer Sources, Shielding, and Collimator 70
3.3.2.2 Drive System 72
3.3.2.3 Detector System and Electronics 73
3.3.3 Backscatter Measurement Geometry 74
3.3.3.1 Cosine Smearing 75
3.3.4 Temperature Dependence and Sampling Depth 77
3.3.4.1 Temperature Dependence 77
3.3.4.2 Sampling Depth 78
3.3.5 Data Structure, Temperature Log, and Backup Strategy 80
3.3.6 Velocity and Energy Calibration 81
3.3.6.1 Velocity Calibration 81
3.3.6.2 Detector Calibration 82
3.3.7 The Advanced Instrument MIMOS IIa 82
References 84
Chapter 4: Hyperfine Interactions 87
4.1 Introduction to Electric Hyperfine Interactions 87
4.1.1 Nuclear Moments 89
4.1.2 Electric Monopole Interaction 89
4.1.3 Electric Quadrupole Interaction 90
4.1.4 Quantum Mechanical Formalism for the Quadrupole Interaction 91
4.2 Mössbauer Isomer Shift 93
4.2.1 Relativistic Effects 95
4.2.2 Isomer Shift Reference Scale 95
4.2.3 Second-Order Doppler Shift 95
4.2.4 Chemical Information from Isomer Shifts 97
4.2.4.1 Isomer Shift Correlations 97
4.2.4.2 Oxidation State and Spin 98
4.2.4.3 Applications of Isomer Shift Correlations 100
4.2.4.4 Covalent Bonding Properties 100
4.2.4.5 Basic Interpretation 101
4.3 Electric Quadrupole Interaction 103
4.3.1 Nuclear Quadrupole Moment 104
4.3.2 Electric Field Gradient 104
4.3.3 Quadrupole Splitting 106
4.3.4 Interpretation and Computation of Electric Field Gradients 109
4.3.4.1 EFG from Point Charges 109
4.3.4.2 The ``Lattice Contribution´´ to the EFG 111
4.3.4.3 Local Contribution from Valence Electrons 112
4.4 Magnetic Dipole Interaction and Magnetic Splitting 116
4.5 Combined Electric and Magnetic Hyperfine Interactions 117
4.5.1 Perturbation Treatment 118
4.5.2 High-Field Condition: gNNBeQVzz/2 118
4.5.2.1 Quadrupole Shifts in High-Field Magnetic Spectra 120
4.5.2.2 Angular Dependence of the Effect of Quadrupole Interaction in High-Field Spectra 120
4.5.3 Low-Field Condition: eQVzz/2gNNB 122
4.5.4 Effective Nuclear g-Factors for eQVzz/2gNNB 125
4.5.5 Remarks on Low-Field and High-Field Mössbauer Spectra 126
4.6 Relative Intensities of Resonance Lines 127
4.6.1 Transition Probabilities 127
4.6.2 Effect of Crystal Anisotropy on the Relative Intensities of Hyperfine Splitting Components 132
4.7 57Fe-Mössbauer Spectroscopy of Paramagnetic Systems 134
4.7.1 The Spin-Hamiltonian Concept 135
4.7.1.1 Ground State Properties and Zero-Field Splitting 136
4.7.2 The Formalism for Electronic Spins 138
4.7.3 Nuclear Hamiltonian and Hyperfine Coupling 139
4.7.3.1 Separation of I- and S-Dependent Contributions 140
4.7.4 Computation of Mössbauer Spectra in Slow and Fast Relaxation Limit 141
4.7.5 Spin Coupling 142
4.7.6 Interpretation, Remarks and Relation with Other Techniques 145
References 146
Chapter 5: Quantum Chemistry and Mössbauer Spectroscopy 150
5.1 Introduction 150
5.2 Electronic Structure Theory 151
5.2.1 The Molecular Schrdinger Equation 151
5.2.2 Hartree-Fock Theory 152
5.2.3 Spin-Polarization and Total Spin 155
5.2.4 Electron Density and Spin-Density 157
5.2.5 Post-Hartree-Fock Theory 158
5.2.6 Density Functional Theory 159
5.2.7 Relativistic Effects 161
5.2.8 Linear Response and Molecular Properties 162
5.3 Mössbauer Properties from Density Functional Theory 163
5.3.1 Isomer Shifts 163
5.3.1.1 Calibration Approach 163
5.3.1.2 An Example 164
5.3.1.3 Advanced Considerations 166
5.3.1.4 Linear Response Treatment 173
5.3.1.5 Solid State and Semiempirical Methods 174
5.3.1.6 Interpretation of the Isomer Shift 175
5.3.2 Quadrupole Splittings 177
5.3.2.1 Correlation with Experiment 178
5.3.2.2 Physical Interpretation of the Electric Field Gradient Tensor 179
One Center Contributions 180
One-Center Core Polarization 180
One Center Valence Contributions 181
Two Center Point-Charge Contributions 183
Two-Center-Bond Contributions 185
Three Center Contributions 185
5.3.2.3 An Example 185
5.3.2.4 Temperature-Dependent Quadrupole Splitting 188
5.3.3 Magnetic Hyperfine Interaction 191
5.3.3.1 Theory 191
5.3.3.2 Correlation with Experiment 191
Isotropic Magnetic Hyperfine Couplings 191
Anisotropic Hyperfine Interaction 193
5.3.3.3 Problems with Density Functional Theory 193
5.3.3.4 Physical Interpretation 193
Isotropic Magnetic Hyperfine Interaction 193
Dipolar Magnetic Hyperfine Interaction 196
Spin-Orbit Coupling Contribution to the Magnetic HFC 196
5.3.3.5 An Example 197
5.3.4 Zero-Field Splitting and g-Tensors 198
5.4 Nuclear Inelastic Scattering 199
5.4.1 The NIS Intensity 200
5.4.2 Example 1: NIS Studies of an Fe(III)-azide(Cyclam-acetato) Complex 202
5.4.2.1 Normal Mode Compositions 205
5.4.3 Example 2: Quantitative Vibrational Dynamics of Iron Ferrous Nitrosyl Tetraphenylporphyrin 206
References 209
Chapter 6: Magnetic Relaxation Phenomena 213
6.1 Introduction 213
6.2 Mössbauer Spectra of Samples with Slow Paramagnetic Relaxation 214
6.3 Mössbauer Relaxation Spectra 217
6.4 Paramagnetic Relaxation Processes 222
6.4.1 Spin-Lattice Relaxation 223
6.4.2 Spin-Spin Relaxation 226
6.5 Relaxation in Magnetic Nanoparticles 232
6.5.1 Superparamagnetic Relaxation 232
6.5.2 Collective Magnetic Excitations 235
6.5.3 Interparticle Interactions 238
6.6 Transverse Relaxation in Canted Spin Structures 241
References 244
Chapter 7: Mössbauer-Active Transition Metals Other than Iron 247
7.1 Nickel (61Ni) 249
7.1.1 Some Practical Aspects 249
7.1.2 Hyperfine Interactions in 61Ni 250
7.1.2.1 Isomer Shifts 250
7.1.2.2 Magnetic Interactions 253
7.1.2.3 Electric Quadrupole Interactions 254
7.1.2.4 Combined Magnetic and Quadrupole Interactions 257
7.1.3 Selected 61Ni Mssbauer Effect Studies 258
7.2 Zinc (67Zn) 267
7.2.1 Experimental Aspects 267
7.2.2 Selected 67Zn Mssbauer Effect Studies 274
7.2.2.1 Gravitational Red Shift Experiments 274
7.2.2.2 Zinc Metal and Alloys 274
7.2.2.3 Inorganic Zinc Compounds 276
7.2.2.4 67Zn Mössbauer Emission Spectroscopy 279
7.3 Ruthenium (99Ru, 101Ru) 282
7.3.1 Experimental Aspects 282
7.3.2 Chemical Information from 99Ru Mssbauer Parameters 282
7.3.2.1 Isomer Shift 284
7.3.2.2 Quadrupole Splitting 289
7.3.2.3 Magnetic Splitting 293
7.3.3 Further 99Ru Studies 296
7.4 Hafnium (176,177,178,180Hf) 297
7.4.1 Practical Aspects of Hafnium Mssbauer Spectroscopy 298
7.4.2 Magnetic Dipole and Electric Quadrupole Interaction 300
7.5 Tantalum (181Ta) 301
7.5.1 Experimental Aspects 302
7.5.2 Isomer Shift Studies 304
7.5.3 Hyperfine Splitting in 181Ta (6.2keV) Spectra 308
7.5.3.1 Quadrupole Splitting 308
7.5.3.2 Magnetic Dipole Splitting 310
7.5.4 Methodological Advances and Selected Applications 312
7.6 Tungsten (180,182,183,184,186W) 313
7.6.1 Practical Aspects of Mössbauer Spectroscopy with Tungsten 315
7.6.2 Chemical Information from Debye-Waller Factor Measurements 317
7.6.3 Chemical Information from Hyperfine Interaction 318
7.6.4 Further 183W Studies 321
7.7 Osmium (186,188,189,190Os) 322
7.7.1 Practical Aspects of Mössbauer Spectroscopy with Osmium 323
7.7.2 Determination of Nuclear Parameters of Osmium Mössbauer Isotopes 325
7.7.2.1 Magnetic Moments and E2/M1 Mixing Parameter 325
7.7.2.2 Nuclear Quadrupole Moments 327
7.7.2.3 Change of Nuclear Charge Radii 327
7.7.3 Inorganic Osmium Compounds 329
7.8 Iridium (191,193Ir) 332
7.8.1 Practical Aspects of 193Ir Mssbauer Spectroscopy 333
7.8.2 Coordination Compounds of Iridium 334
7.8.3 Intermetallic Compounds and Alloys of Iridium 341
7.8.4 Recent 193Ir Mssbauer Studies 349
7.9 Platinum (195Pt) 351
7.9.1 Experimental Aspects 351
7.9.2 Platinum Compounds 353
7.9.3 Metallic Systems 356
7.10 Gold (197Au) 360
7.10.1 Practical Aspects 361
7.10.2 Inorganic and Metal-Organic Compounds of Gold 362
7.10.3 Specific Applications 373
7.10.3.1 Gold in Medicine 373
7.10.3.2 Gold Substitution in High-Tc Superconductors 373
7.10.3.3 Gold Minerals and Ores 374
7.10.3.4 Gold-Containing Catalysts 375
7.10.3.5 Gold Clusters 376
7.10.3.6 Gold Multilayers 377
7.10.3.7 Intermetallic Compounds 378
7.10.3.8 Alloys 381
7.11 Mercury (199,201Hg) 385
References 388
References to Sect. 7.1 388
References to Sect. 7.2 389
References to Sect. 7.3 391
References to Sect. 7.4 393
References to Sect. 7.5 393
References to Sect. 7.6 395
References to Sect. 7.7 396
References to Sect. 7.8 396
References to Sect. 7.9 397
References to Sect. 7.10 398
References to Sect. 7.11 402
Chapter 8: Some Special Applications 403
8.1 Spin Crossover Phenomena in Fe(II) Complexes 404
8.1.1 Introduction 404
8.1.2 Spin Crossover in [Fe(2-pic)3]Cl2cSol 408
8.1.3 Effect of Light Irradiation (LIESST Effect) 411
8.1.4 Spin Crossover in Dinuclear Iron(II) Complexes 415
8.1.5 Spin Crossover in a Trinuclear Iron(II) Complex 420
8.1.6 Spin Crossover in Metallomesogens 423
8.1.7 Effect of Nuclear Decay: Mössbauer Emission Spectroscopy 425
8.2 57Fe Mössbauer Spectroscopy: Unusual Spin and Valence States 429
8.2.1 Iron(III) with Intermediate Spin, S=3/2 429
8.2.1.1 Ligand Field Considerations 429
8.2.1.2 Mössbauer Parameters 430
Square- and Rhombic-Pyramidal Complexes 431
S4X Ligand Sphere 431
S2N2X Ligand Sphere 433
O2N2X Ligand Sphere 433
N4X Ligand Sphere 434
Six-Coordinate Complexes 434
Common Features and Electronic Structures 435
8.2.1.3 Spin Admixture S=(5/2, 3/2) in Porphyrinates: A Special Case? 436
8.2.2 Iron(II) with Intermediate Spin, S=1 437
8.2.2.1 Square-Planar Iron(II) Compounds 437
Six-Coordinate Iron(II) Complexes 440
8.2.3 Iron in the High Oxidation States IV-VI 440
8.2.3.1 Crystal-Field Ground States 441
8.2.3.2 Iron(IV) Oxides 442
8.2.3.3 Iron(IV) in Metalloproteins and Coordination Compounds 442
Heme Iron(IV) Oxo Centers 444
Nonheme Iron(IV) Oxo Centers 445
High-Valent Iron Dimers 446
Mononuclear Iron(IV)-Nitrido and -Imido Compounds 447
Nonoxo-, Nonnitrido-Iron(IV) Compounds 448
Corroles and Other Noninnocent Ligands 449
8.2.3.4 Iron(V) Compounds 450
8.2.3.5 Iron(VI) Compounds 451
8.2.4 Iron in Low Oxidation States 452
8.2.4.1 Low-Valent Iron Porphyrins 453
8.2.4.2 Three- and Four-Coordinate Low-Valent Iron Compounds 455
8.2.4.3 Low-Spin Iron in the Active Site of Hydrogenases 456
[FeFe]-Hydrogenases 456
[NiFe]-Hydrogenases 457
[Fe]-Hydrogenase 457
8.3 Mobile Mössbauer Spectroscopy with MIMOS in Space and on Earth 459
8.3.1 Introduction 459
8.3.2 The Instrument MIMOS II 460
8.3.3 Examples 463
8.3.3.1 Mars-Exploration-Rover Mission 463
8.3.3.2 Terrestrial Applications 471
8.3.3.3 The Advanced Instrument MIMOS IIa 475
8.3.4 Conclusions and Outlook 476
References 476
References to Sect. 8.1 395
References to Sect. 8.2 393
References to Sect. 8.3 391
Chapter 9: Nuclear Resonance Scattering Using Synchrotron Radiation (Mössbauer Spectroscopy in the Time Domain) 489
9.1 Introduction 489
9.2 Instrumentation 490
9.3 Nuclear Forward Scattering (NFS) 491
9.3.1 Quadrupole Splitting: Theoretical Background 492
9.3.2 Effective Thickness, Lamb-Mössbauer Factor 492
9.4 NFS Applications 495
9.4.1 Polycrystalline Material Versus Frozen Solution (Example: ``Picket-Fence´´ Porphyrin and Deoxymyoglobin) 495
9.4.2 Temperature-Dependent Quadrupole Splitting in Paramagnetic (S=2) Iron Compounds (Example: Deoxymyoglobin) 498
9.4.3 Dynamically Induced Temperature-Dependence of Quadrupole Splitting (Example: Oxymyoglobin) 499
9.4.4 Molecular Dynamics of a Sensor Molecule in Various Hosts (Example: Ferrocene (FC)) 502
9.4.5 Temperature-Dependent Quadrupole Splitting and Lamb-Mössbauer Factor in Spin-Crossover Compounds(Example: [FeII(tpa)(NCS)2]) 503
9.4.6 Coherent Versus Incoherent Superposition of Forward Scattered Radiation of High-Spin and Low-Spin Domains (Example: [FeII(tpa)(NCS)2]) 505
9.4.7 Orientation-Dependent Line-Intensity Ratio and Lamb-Mössbauer Factor in Single Crystals (Example: (CN3H6)2[Fe(CN)5NO]) 507
9.5 Isomer Shift Derived from NFS (Including a Reference Scatterer) 509
9.6 Magnetic Interaction Visualized by NFS 510
9.6.1 Magnetic Interaction in a Diamagnetic Iron Complex (Example: [FeO2(SC6HF4)(TPpivP)]) 510
9.6.2 Magnetic Hyperfine Interaction in Paramagnetic Iron Complexes (Examples: [Fe(CH3COO)(TPpivP)]- with S=2 and [TPPFe(NH2PzH)2]Cl with S = 1/2) 510
9.6.3 Magnetic Hyperfine Interaction and Spin-Lattice Relaxation in Paramagnetic Iron Complexes (Examples: Ferric Low-Spin (FeII, S=2)) 515
9.6.4 Superparamagnetic Relaxation (Example: Ferritin) 517
9.6.5 High-Pressure Investigations of Magnetic Properties (Examples: Laves Phases and Iron Oxides) 520
9.7 NFS Visualized by the Nuclear Lighthouse Effect (NLE) (Example: Iron Foil) 523
9.8 Synchrotron Radiation Based Perturbed Angular Correlation, SRPAC (Example: Whole-Molecule Rotation of FC) 524
9.9 Nuclear Inelastic Scattering 528
9.9.1 Phonon Creation and Annihilation 528
9.9.2 Data Analysis and DOS (Example: Hexacyanoferrate) 530
9.9.3 Data Analysis Using Absorption Probability Density (Example: Guanidinium Nitroprusside) 532
9.9.4 Iron-Ligand Vibrations in Spin-Crossover Complexes 535
9.9.4.1 Thermally Induced Spin Transition (Example: [Fe(tpa)(NCS)2]) 535
9.9.4.2 Entropy Change Upon Transition (Example: [Fe(Phen)2(NCS)2]) 538
9.9.5 Boson Peak, a Signature of Delocalized Collective Motions in Glasses (Example: FC as Sensor Molecule) 538
9.9.6 Protein Dynamics Visualized by NIS 540
9.9.6.1 Iron-Sulfur Proteins (Examples: FeS4 - and Fe4S4 - Centers) 541
9.9.6.2 Heme Proteins (Examples: Deoxy-, CO- and Metmyoglobin) 544
9.10 Nuclear Resonance Scattering with Isotopes Other Than 57Fe 546
References 548
Chapter 10: Appendices 552
Appendix A: Optimization of Sample Thickness 552
References 553
Appendix B: Mass Absorption Coefficients 554
Appendix C: The Isomer Shift Calibration Constant 555
References 556
Appendix D: Relativistic Corrections for the Mössbauer Isomer Shift 557
References 557
Appendix E: An Introduction to Second-Order Doppler Shift 558
References 559
Appendix F: Formal and Spectroscopic Oxidation States 560
References 561
Appendix G: Spin-Hamiltonian Operator with Terms of Higher Order in S 561
References 562
Appendix H: Remark on Spin-Lattice Relaxation 562
References 563
Appendix I: Physical Constants and Conversion Factors 564
References 567
Index 568

Erscheint lt. Verlag 25.12.2010
Zusatzinfo XV, 569 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte Inorganic Chemistry • Materials Characterisation • Mössbauer spectroscopy • transition metals
ISBN-10 3-540-88428-9 / 3540884289
ISBN-13 978-3-540-88428-6 / 9783540884286
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
69,99