Heteromagnetic Microelectronics (eBook)
XXIV, 506 Seiten
Springer New York (Verlag)
978-1-4419-6002-3 (ISBN)
Alexander Ignatiev is a professor and head of the general physics department at Saratov State University, Russia. He is the main designer of critical technologies in JSC 'Research Institute-Tantal,' an expert in the field of radiophysics, including quantum radiophysics, and the author of 4 monographs and more than 200 publications. Dr. Ignatiev holds 20 patents in directions noise processes in generating beam devices of M-type of a millimetric range including intellectual development of heteromagnetic technologies and development of double purpose devices.
Alexander Ignatiev is a professor and head of the general physics department at Saratov State University, Russia. He is the main designer of critical technologies in JSC "Research Institute-Tantal," an expert in the field of radiophysics, including quantum radiophysics, and the author of 4 monographs and more than 200 publications. Dr. Ignatiev holds 20 patents in directions noise processes in generating beam devices of M-type of a millimetric range including intellectual development of heteromagnetic technologies and development of double purpose devices.
Foreword
6
Introduction 8
Contents 14
Abbreviation 20
Symbols 24
Part I Experimental Investigation of the Properties of Oscillating Heteromagnetic Structures at Low, Medium, and High Power Levels 26
1 Spectra of Regular and Noise Signals 27
1.1 General Remarks: Generalized Models 27
1.2 Regimes of Low and Middle Power Levels 40
1.3 Regimes of High Power Level 46
1.3.1 Control by Magnetic Fieldand High-Frequency Signals Power 46
1.3.2 Multifunctional Properties of Powerful Heteromagnetic Oscillators 53
1.4 Signal Spectra of Heteromagnetic Interactions on High Power Levels 69
2 Properties of Structures with Ferrites of Different Magnetizations 84
2.1 General Remarks 84
2.2 Structures with Ferrite KG-8 85
2.2.1 Angle of Orientation of FMCR =45 90
2.2.2 Angle of Orientation of FMCR =90 94
2.3 Structures with Ferrite KG-15 99
2.3.1 Angle of Orientation of FMCR =0 99
2.3.2 Angle of Orientation of FMCR =45 106
2.3.3 Angle of Orientation of FMCR =90 110
2.4 Structures with Ferrite KG-50 114
2.4.1 Angle of Orientation of FMCR =0 114
2.4.2 Angle of Orientation of FMCR =45 118
2.4.3 Angle of Orientation of FMCR =90 122
2.5 Structures with Ferrites KG-65 and KG-140 125
2.5.1 Angle of Orientation of FMCR =90 125
2.6 Generalization of Experimental Data 128
3 Control Over Energy and Spectral Characteristics 130
3.1 Control Over Characteristics of Spectral-Pure Signals 130
3.1.1 Structures with Various Orientations in a Magnetic Field 130
3.1.1.1 FMCR from KG-8 130
3.1.1.2 FMCR of KG-15 133
3.1.1.3 FMCR of KG-50 134
3.1.2 Structures with Ferrites of Various Magnetization 137
3.1.2.1 FMCR Orientation Angle =0 138
3.1.2.2 FMCR Orientation Angle =45 141
3.1.2.3 FMCR Orientation Angle =90 144
3.2 Control Over Characteristics of Pseudonoise and Noise Signals 147
3.2.1 Structures with Various Orientations in a Magnetic Field 147
3.2.1.1 FMCR of KG-8 147
3.2.1.2 FMCR of KG-15 150
3.2.1.3 FMCR of KG-50 152
3.2.2 Structures with Ferrites of Various Magnetization 154
3.2.2.1 FMCR Orientation Angle =0 154
3.2.2.2 FMCR Orientation Angle =45 156
3.2.2.3 FMCR Orientation Angle =90 160
3.3 Control Over Characteristics of Evenly Spaced Grids of Signal Frequencies 162
3.3.1 Structures with Various Orientations in a Magnetic Field 162
3.3.1.1 FMCR of KG-8 162
3.3.1.2 FMCR of KG-15 163
3.3.2 Structures with Ferrites of Various Magnetization 165
3.3.2.1 FMCR Orientation Angle =0 165
3.3.2.2 FMCR Orientation Angle =90 169
4 Generalization Control Characteristics in Generative Structures 171
4.1 Structure Characteristics with Various Orientations 171
4.1.1 Structures with KG-8 FMCR 171
4.1.2 Structures with KG-15 FMCR 172
4.1.3 Structures with KG-50 FMCR 175
4.2 Structure Characteristics with Various Magnetizations 177
4.2.1 FMCR Orientation Angle =0 179
4.2.2 FMCR Orientation Angle =45 181
4.2.3 FMCR Orientation Angle =90 181
4.3 Physical Mechanisms of Heteromagnetic Interactions 194
Part II Process Modeling in Heteromagnetic Structures 195
5 Heteromagnetic Oscillator 196
5.1 Equivalent Circuit of a High-Power Bipolar Transistor 196
5.2 Modeling of Static Characteristics of a Powerful Bipolar Transistor 202
5.3 Basic Model Equations 203
5.4 Calculation of Characteristics of Powerful Heteromagnetic Microwave Oscillators 206
5.5 Modeling of Complicated Regimes 212
6 Multicircuit Model of a Multifunctional Heteromagnetic Oscillator 219
6.1 Equivalent Circuit 219
6.2 Model Equations 222
6.3 Methods of Finalizing Equivalent Parameters of Transistor 225
6.4 Equivalent Circuit of a Multifunctional Heteromagnetic Oscillator 232
6.5 Oscillating Modes of Subharmonic Constituents 234
6.6 Oscillating Modes of Evenly Spaced Frequencies Spectra 243
6.7 Regimes of Pseudonoise Signals 246
Part III Calculation of Parameters of Heteromagnetic Structures 255
7 Calculation of Parameters of Transistors, Coupling Elements, Magnetotransistors in a Frequency Band Below 100GHz 256
7.1 Bipolar Transistor in Omnirange, UHF Range 256
7.1.1 General Data on Programs 257
7.1.2 Test Task 260
7.2 FET in Omnirange, UHF Range 261
7.2.1 Determination of Parameters of a FET Model with Schottky Gate 261
7.2.2 Method for Determination of Transistor Parameters 264
7.2.3 Test Task 265
7.3 Powerful FET in EHF Range 268
7.3.1 Model of EHF Transistor of HEMT-1 269
7.3.2 Model of EHF Transistor of HEMT-2 271
7.4 Magnetoelectronic Elements of LPL 272
7.4.1 Coupling Element in Omnirange, UHF Range 273
7.4.2 Coupling Element in Microwave Frequency, EHF Range 277
7.5 Powerful Bipolar Transistor in Microwave Frequency Range 279
7.6 Powerful Bipolar Heteromagnetic Transistor in Microwave Frequency Range 283
7.7 Powerful Magneto-FET in a Frequency Band Below 30GHz 290
7.8 Powerful Magneto-FET in EHF Range 293
8 Calculation of Thermal Conditions of Magnetotransistors in Continuous and Pulse Modes 296
8.1 General Remarks 296
8.2 Nonstationary and Temperature Field of Powerful Magneto-FET in Pulse Mode 298
8.3 Stationary Thermal Resistance of Powerful Magneto-FET with Squared Shape 301
8.4 Stationary Thermal Resistance of Powerful Magneto-FET in the Form of Multilayer Cylinder 302
Part IV Applied Aspects 305
9 Influence of External Factors 306
9.1 General Remarks 306
9.2 Estimation of Static Load 308
9.3 Strength of Beam-Type Bonds 309
9.4 Strength of Glue Fixation 310
9.5 Strength of Screw Connection 311
9.6 Resistivity to Dynamic Forces 312
9.7 Resistivity to Pressure Changes 313
9.8 Resistivity to Temperature Excitations 314
9.9 Resistivity of HMS to External Factors 316
9.10 Estimation of Jam Protection 316
10 Multifunctional Generation and Boosting 324
10.1 Generation of Increased Continued and Pulse Power Levels in Omnirange, UHF Ranges 324
10.2 Signal Multiplication in Omnirange, UHF Range 326
10.3 Generation and Multiplication of Signals of Lowand High Power Levels in UHF and Microwave Frequency Ranges 327
10.4 Generation of Powerful Signals in the EHF Range 330
11 Multifunctional Frequency Synthesizers 334
11.1 General Data 334
11.2 Oscillators Operated by Magnetic Field in FrequencySynthesizers 339
11.3 Frequency Synthesizers of Indirect Synthesis Based on APLC 341
11.4 Oscillator Operated by Magnetic Field 343
11.4.1 Experimental MCG Research 346
11.5 Multifunctional Frequency Synthesizers Based on APLC Using GSM 348
11.6 Multifunctional Operated Frequency Synthesizer Based on Transistor BFR 90 349
11.7 Transient Processes Inside Synthesizers with APLC 352
11.8 Output Characteristics of GSM 353
11.9 Pseudorandom Working Frequency Tuning and Phase-Shift Keying of Pseudonoise SignalUsing GSM 361
11.9.1 GSM with PWFT Function 361
11.9.2 GSM with PSK PS Function 363
11.10 Discrete Phaser for PSK PS 364
11.11 Frequency Synthesizers on Generative Magnetotransistors 374
12 Vector Sensors and Magnetometers with Heteromagnetic Interaction 375
12.1 Investigations of Properties of Double-Coil Coupling Elements 375
12.2 Magnetosensitive Active Oscillator 378
12.3 Projection Element of Magnetosensitive Sensor 383
12.4 Magnetosensitive One-Coordinate Sensor 388
12.5 Measurement Procedures of Ferrite Microresonator Parameters 394
12.5.1 Determination of Equilibrium Orientation of Magnetization for Cubic Ferrite Monocrystals 394
12.5.2 Determination of Equilibrium Orientation of Magnetization of Spheric Specimen 396
12.6 Experimental Investigation of Parameters of a Vector Magnetoelectronic Sensor 400
12.7 Determination of Earth's Magnetic Field Vector by a Heteromagnetic Sensor 408
12.8 Algorithms and Circuit Engineering Solutions for Investigations of Frequency Signal Responses from a Heteromagnetic Sensor 411
13 Low-Noise Amplifiers on Magnetotransistors Below 40GHz 418
13.1 Power Level and Dynamic Range. Choice of a Linear Transistor Model for Calculation 418
13.2 Choice and Substantiation of Coupling Element for a Frequency Band Below 40GHz 420
13.3 Projection of Magnetoelectronic One-Stage Amplifier on Magnetotransistor 423
14 Magnetotransistors and Their Technologies 433
14.1 Magneto-FET of High Power Level in Intense and Generator Modes 433
14.2 Bipolar Magnetotransistors in Intense Mode on High Power Level in UHF Range 437
14.3 Experimental Investigation of Bipolar Magnetotransistors Based on KT9175A Crystals 444
14.4 Magneto-FET in EHF Range in Boost Regime 446
14.5 FET and Bipolar Magnetotransistor in Microwave Frequency Range of High Power Level 453
14.5.1 Magneto-FET of High Power Level 453
14.5.2 Bipolar Magnetotransistors of High Power Level 454
14.6 Ferrite Semiconductor Structures in Regime of Oscillation Conversion in a Frequency Band 100–1,000GHz 458
14.7 Manufacturing Methods 463
14.7.1 FET Parameters 463
14.7.2 Technological Peculiarities of Manufacturing of GaAs FET 465
14.8 Manufacturing Methods of an Integral Magnetosemiconductor Device 469
14.9 Multivariate Vector Sensors of Mechanical DynamicQuantities 474
14.10 Multivariate Vector Sensors of Electromagnetic and Mechanical Physical Quantities for New Generations of Metrical, Checking, and Tested Microsystems, Including Intellectual Ones 480
15 Nonlinear Effects in Magnetotransistors and Their Elements 488
15.1 Peculiarities of Nonlinear Processes in Ferromagnetics 488
15.2 Peculiarities of Ferromagnetic Resonancein Structures with First-order Nonlinearity 489
15.3 Experimental Observations of Nonlinear Ferromagnetic Resonance 490
15.4 Generation of Signals in Regime of Nonlinear Ferromagnetic Resonance 493
15.5 Saturation Mode of Principal Resonance 495
15.6 Power Limiting in FMCR 496
Conclusion 502
References 504
Index 508
Erscheint lt. Verlag | 20.7.2010 |
---|---|
Zusatzinfo | XXIV, 506 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik |
Naturwissenschaften ► Physik / Astronomie ► Elektrodynamik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | active type microsystems • advanced electromagnetic materials • Designing heteromagnetic microsystems • heteromagnetic microelectronics • Laser • Magnetic phenomena • Model • Modeling • Multiple parameter miscrosystems • semiconductor • Sensor • Signal • Transistor |
ISBN-10 | 1-4419-6002-3 / 1441960023 |
ISBN-13 | 978-1-4419-6002-3 / 9781441960023 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich