Model Systems in Catalysis (eBook)

Single Crystals to Supported Enzyme Mimics

Robert Rioux (Herausgeber)

eBook Download: PDF
2009 | 2010
XIX, 526 Seiten
Springer New York (Verlag)
978-0-387-98049-2 (ISBN)

Lese- und Medienproben

Model Systems in Catalysis -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is an excellent compilation of cutting-edge research in heterogeneous catalysis and related disciplines - surface science, organometallic catalysis, and enzymatic catalysis. In 23 chapters by noted experts, the volume demonstrates varied approaches using model systems and their successes in understanding aspects of heterogeneous catalysis, both metal- and metal oxide-based catalysis in extended single crystal and nanostructured catalytic materials. To truly appreciate the astounding advances of modern heterogeneous catalysis, let us first consider the subject from a historical perspective. Heterogeneous catalysis had its beginnings in England and France with the work of scientists such as Humphrey Davy (1778-1829), Michael Faraday (1791-1867), and Paul Sabatier (1854-1941). Sabatier postulated that surface compounds, si- lar to those familiar in bulk to chemists, were the intermediate species leading to catalytic products. Sabatier proposed, for example, that NiH moieties on a Ni sur- 2 face were able to hydrogenate ethylene, whereas NiH was not. In the USA, Irving Langmuir concluded just the opposite, namely, that chemisorbed surface species are chemically bound to surfaces and are unlike known molecules. These chemisorbed species were the active participants in catalysis. The equilibrium between gas-phase molecules and adsorbed chemisorbed species (yielding an adsorption isotherm) produced a monolayer by simple site-filling kinetics.
This book is an excellent compilation of cutting-edge research in heterogeneous catalysis and related disciplines - surface science, organometallic catalysis, and enzymatic catalysis. In 23 chapters by noted experts, the volume demonstrates varied approaches using model systems and their successes in understanding aspects of heterogeneous catalysis, both metal- and metal oxide-based catalysis in extended single crystal and nanostructured catalytic materials. To truly appreciate the astounding advances of modern heterogeneous catalysis, let us first consider the subject from a historical perspective. Heterogeneous catalysis had its beginnings in England and France with the work of scientists such as Humphrey Davy (1778-1829), Michael Faraday (1791-1867), and Paul Sabatier (1854-1941). Sabatier postulated that surface compounds, si- lar to those familiar in bulk to chemists, were the intermediate species leading to catalytic products. Sabatier proposed, for example, that NiH moieties on a Ni sur- 2 face were able to hydrogenate ethylene, whereas NiH was not. In the USA, Irving Langmuir concluded just the opposite, namely, that chemisorbed surface species are chemically bound to surfaces and are unlike known molecules. These chemisorbed species were the active participants in catalysis. The equilibrium between gas-phase molecules and adsorbed chemisorbed species (yielding an adsorption isotherm) produced a monolayer by simple site-filling kinetics.

Foreword 5
Preface 9
Contents 11
Contributors 14
Chapter 1 19
Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals 19
1.1 Introduction 19
1.2 Chemistry of Acetylene Cyclotrimerization 21
1.3 Effect of Hydrogen Addition on the Benzene Formation Rate 27
1.4 Alkene and Alkyne Hydrogenation 33
1.4.1 Acetylene Hydrogenation 34
1.4.2 Ethylene Hydrogenation 37
1.5 Summary 40
Chapter 2 47
Structure, Characterization and Reactivity of Pt–Sn Surface Alloys 47
2.1 Introduction 47
2.2 Structure of Ordered Sn/Pt(111) and Sn/Pt(100) Surface Alloys 49
2.3 Other Related Surface Alloys 52
2.4 Chemisorption on Pt–Sn Surface Alloys 53
2.4.1 Diatomic Molecules (H2, O2, CO, and NO) 53
2.4.1.1 Hydrogen Adsorption 55
2.5 Hydrocarbons 55
2.5.1 Alkanes 55
2.5.2 Alkenes 56
2.5.3 Dienes 58
2.5.4 Alkynes 58
2.5.5 Arenes 60
2.6 Small Oxygen-Containing Organic Molecules 61
2.7 Microreactor Studies of Catalysis over Pt–Sn Surface Alloys 62
2.7.1 Hydrogenation of Crotonaldehyde 62
2.7.2 Hydrogenation of Cyclohexanone 64
2.8 Summary 64
References 66
Chapter 3 69
Catalysis at Bimetallic Electrochemical Interfaces 69
3.1 Introduction 69
3.2 Bimetallic Surfaces 71
3.2.1 Preparation and UHV Characterization of Pt3M Bulk Alloys 71
3.2.2 Preparation and UHV Characterization of Surface Alloys and Thin Metal Films 74
3.2.2.1 Surface Alloys of Pd-Au 75
3.2.2.2 Pd Films on Pt 75
3.2.3 Characterization of Bimetallic Surfaces in Electrochemical Environments 76
3.2.3.1 Ex Situ Characterization of Pt3M Polycrystalline Surfaces 76
3.2.3.2 In Situ Characterization of Pt3Ni(hkl) Single-Crystal Surfaces 77
3.2.3.3 In Situ Characterization of Pd Thin Metal Films on Au(111) and Pt(111) 79
3.3 Electrocatalysis on Well-Characterized Bimetallic Surfaces 79
3.3.1 Oxygen Reduction Reaction on Pt3.M 81
3.3.2 Hydrogen Oxidation Reaction on Au(111)-Pd and Pt(111)-Pd Overlayers 85
3.4 Summary 87
References 88
Chapter 4 92
Enantioselectivity on Naturally Chiral Metal Surfaces 92
4.1 Chirality and Enantioselectivity 92
4.2 Chiral Surfaces 94
4.3 Structure of Naturally Chiral Metal Surfaces 97
4.4 Enantiospecific Adsorption on Chiral Metal Surfaces 101
4.5 Enantioselective Surface Chemistry on Chiral Metal Surfaces 103
4.6 Enantiospecific Molecular Orientation on Chiral Surfaces 105
4.7 Synthesis of Naturally Chiral Surfaces 107
4.8 Conclusions 110
References 110
Chapter 5 113
Chiral Expression by Organic Architectures at Metal Surfaces: the Role of Both Adsorbate and Surface in Inducing Asymmetry 113
5.1 Introduction 113
5.2 Model Systems: (R,R)-Tartaric Acid on Cu(110) 114
5.2.1 Hierarchical Chiral Expression: The (9 0,1 2) Phase 116
5.2.2 Point Chirality: Factors that Introduce Asymmetry in the (R,R)-Tartaric Acid Adsorbed Motif 116
5.2.4 Switching Space Group Chirality 118
5.2.5 Creation of Empty Chiral Channels Within Supramolecular Assemblies 121
5.3 Model Systems: R,R-Tartaric Acid on Ni(110) 122
5.3.1 Chiral Transmission from Molecule to Surface 124
5.4 Model Systems: Succinic acid on Cu(110): The Adsorption of Achiral Molecules at Surfaces 124
5.4.1 Adsorption Induced Chirality: The (9 0, +1 1) and (9 0, 1 1) phases 125
5.4.2 The p(4.×.2) Organisation 125
5.5 Conclusions 128
References 129
Chapter 6 132
Role of C and P Sites on the Chemical Activity of Metal Carbides and Phosphides: From Clusters to Single-Crystal Surfaces 132
6.1 Introduction 132
6.2 Effects of Carbon/Metal Ratio on the Chemical Properties of Metal Carbides 134
6.3 Reaction of Oxygen with Metal Carbide Surfaces 136
6.4 Desulfurization Reactions on Metal Carbides and Phosphides 140
6.5 Conclusions 145
References 146
Chapter 7 148
Surface Reactions of Oxygen Containing Compounds on Metal Oxide (TiO2 and UO2) Single Crystals 148
7.1 Introduction 148
7.2 Structure of Rutile TiO2 and UO2 Surfaces 149
7.2.1 Rutile TiO2 149
7.2.2 Fluorite UO2 151
7.3 Defects on Single-Crystalline TiO2 and UO2 Surfaces 152
7.4 Catalytic Reactions on Uranium and Titanium-Oxide Surfaces 153
7.4.1 Dehydrogenation/Dehydration of Ethanol 153
7.4.2 Oxidation of CO, Formaldehyde, and Simple Alkenes on Uranium Oxides 157
7.4.3 Decomposition of Water at Point Defects on Single-Crystal UO2 Surfaces 158
7.4.4 Reaction of Aldehydes Over Titanium and Uranium Oxide Single-Crystal Surfaces 161
7.5 Photocatalysis on TiO2(110) Single Crystals 162
7.6 Conclusions 165
References 166
Chapter 8 170
Surface Science Studies of Strong Metal-Oxide Interactions on Model Catalysts 170
8.1 Introduction 170
8.2 Pd on TiO2 and the Formation of the SMSI State 171
8.3 Surface Chemistry of Pd Model Catalysts in the SMSI State 175
8.4 Pt on TiO2 and the Formation of the SMSI State 177
8.5 Structural Models for the SMSI State on Pd and Pt 178
8.6 Mechanisms of Encapsulation in the Formation of the SMSI State 183
8.7 Summary 186
References 186
Chapter 9 189
Surface Thermodynamics: Small Molecule Adsorption Calorimetry on Metal Single Crystals 189
9.1 Introduction 189
9.2 Experimental 190
9.3 Carbon Monoxide Adsorption on Pt, Ni, Rh and Fe 192
9.3.1 CO on Pt{211}, Pt{311} and Pt{411} 192
9.3.2 CO on Ni{211} 194
9.3.3 CO on Rh{100} 195
9.3.4 CO on Fe{211} 196
9.4 Oxygen Adsorption on Ni, Pt and Fe 198
9.4.1 O2 on Ni{211} 198
9.4.2 O2 on Pt{111}, Pt{211} and Pt{411} 201
9.4.3 O2 on Fe{211} 202
9.5 Nitric Oxide Adsorption on Ni, Pt and Fe 204
9.5.1 NO on Clean and Oxygen-Covered Ni{211} 204
9.5.2 NO on Pt{111}, Pt{211} and Pt{411} 206
9.5.3 NO on Fe{211} 208
9.6 Adsorption Thermodynamics and Pre-exponential Factor for Desorption 209
References 213
Chapter 10 216
Surface Femtochemistry* 216
10.1 Introduction 216
10.2 Experimental 219
10.2.1 Laser Induced Desorption 219
10.2.2 Sum-frequency Generation 220
10.2.3 Sample Preparation 221
10.3 Results and Discussion 223
10.3.1 Site-dependent Chemical Dynamics 223
10.3.2 Real-time Observation of Diffusion 226
10.4 Conclusions 231
References 232
Chapter 11 235
The Incorporation of Added Metal Atoms into Structures of Reaction Intermediates on Catalytic Metal Surfaces 235
11.1 Introduction 235
11.2 Oxygen-Induced Reconstructions on Metal Surfaces 238
11.3 Hydrogen-Induced Reconstructions on Metal Surfaces 244
11.4 Incorporation of Metal Adatoms into the Structures of Reaction Intermediates on Metal Surfaces 247
11.5 Effect of Incorporated Ni Adatoms on the Autocatalytic Decomposition of Formate and Acetate on Ni(110) 254
11.6 Summary 257
References 259
Chapter 12 264
Chemical Bonding on Metal Surfaces 264
12.1 Introduction 264
12.2 Probing the Electronic Structure 265
12.3 Adsorbate Electronic Structure and Chemical Bonding 268
12.4 Radical Adsorption 271
12.5 Diatomic Molecules with Unsaturated p-Electron Systems 273
12.6 Unsaturated Hydrocarbons 277
12.7 Lone Pair Interactions and Bonding of Saturated Hydrocarbons 281
References 283
Chapter 13 286
From Molecular Insights to Novel Catalysts Formulation 286
13.1 Introduction 286
13.2 Steam Reforming: Background 288
13.3 DFT Studies: Carbon Chemistry on Ni Surfaces 290
13.4 Assessment of the Thermodynamic Stability of Alloys 293
13.5 Catalyst Synthesis, Characterization and Testing 296
13.6 Conclusions 300
References 300
Chapter 14 304
The Reactivity of Gas-Phase Metal Oxide Clusters: Systems for Understanding the Mechanisms of Heterogeneous Catalysts 304
14.1 Introduction 304
14.2 Formation and Composition of Metal Oxide Ions 307
14.3 New Insights into Heterogeneous Catalysis 307
14.3.1 Vanadium Oxides 307
14.3.2 Gold Oxides 310
14.3.3 Transition Metal Oxides 313
14.3.4 Iron Oxides 314
14.4 Periodic Trends in 3.d Transition Metal Oxide Reactivity 316
14.4.1 Cobalt Oxides 317
14.4.2 Nickel Oxides 318
14.4.3 Aluminum Oxides 320
14.4.4 Bimetallic Oxide Clusters 323
14.5 Conclusions 324
References 324
Chapter 15 329
Catalysis by Noble Metal Nanoparticles Supported on Thin-Oxide Films 329
15.1 Model Catalysis with Nanoparticles 329
15.2 Microstructure Changes of Nanoparticles 331
15.3 Epitaxial Thin Film Model Catalysts 332
15.3.1 Preparation and Nanoparticle Structure of Epitaxial Thin Film Model Catalysts 333
15.3.2 Applications of Epitaxially Grown Thin Film Model Catalysts 334
15.3.2.1 Restructuring of Rh–Al2O3 upon Oxidative and Reductive Treatments 334
15.3.2.2 Metal-support Interaction upon Hydrogen Reduction of Rh–Al2O3 and Rh–TiO2 336
15.3.3 Limitations of Epitaxial Thin Film Model Catalysts 337
15.4 Ultrahigh Vacuum Grown Model Catalysts 338
15.4.1 Preparation and Structure of UHV-grown Model Catalysts 338
15.4.2 Reactivity of UHV-grown Supported Model Catalysts 341
15.4.2.1 Ethylene and 1,3-Butadiene Hydrogenation 342
15.4.2.2 In situ Spectroscopy During Catalytic Reactions on UHV-grown Supported Model Catalysts 343
15.4.2.3 CO Hydrogenation 344
15.4.2.4 Methanol Oxidation 347
15.5 Conclusions 349
References 350
Chapter 16 354
Catalysis by Supported Size-Selected Clusters 354
16.1 Introduction 354
16.2 Brief Review of Methodology 355
16.3 Characterization 357
16.4 Reactivity 359
16.5 Future Experiments Involving Size-Selected Clusters 367
References 370
Chapter 17 375
Catalysis by Thin Oxide Films and Oxide Nanoparticles 375
17.1 Model Catalysis on Oxides 375
17.2 Thin-Film Model Oxide Catalysts 378
17.2.1 Preparation of Thin Oxide Films and Oxide Nanoparticles 378
17.2.2 Structure and Catalytic Activity of Thin Film Model Oxide Catalysts 379
17.2.2.1 Ga2O3 379
Chapter 18 403
Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Heterogeneous or Homogeneous? 403
18.1 Introduction 403
18.2 Experimental Techniques to Determine Catalytic Nature of Colloidal Nanoparticles 405
18.3 Redox Reactions 406
18.3.1 Particle Size Dependence 406
18.3.2 Effect of Capping Material 408
18.3.3 Concentration Dependence of the Colloidal Nanoparticles 409
18.3.4 Particle Shape Dependence 409
18.3.4.1 Effect of Particle Shape on the Activity of the Reaction 409
18.3.5 Influence of Catalysis on the Stability of Particle Shape 410
18.4 Carbon–Carbon Bond Forming Reactions 412
18.4.1 Carbon–Carbon Bond Formation Reactions Catalyzedby Colloidal Nanoparticles 413
18.4.2 Influence of Catalysis on Particle stability 414
18.4.3 Investigations of Atomic Leaching from Colloidal Nanoparticle Catalysts 415
18.5 Summary 418
References 419
Chapter 19 423
Well-Defined Metallic and Bimetallic Clusters Supported on Oxides and Zeolites 423
19.1 Introduction 423
19.2 Mononuclear Metal Complexes Supported on Metal Oxides and Zeolites 424
19.2.1 Synthesis 425
19.2.2 Structural Characterization 426
19.2.3 Catalysis 431
19.3 Metal Clusters Supported on Metal Oxides and Zeolites 431
19.3.1 Synthesis 431
19.3.2 Structural Characterization 435
19.3.3 Catalysis 436
19.4 Bimetallic Clusters Supported on Metal Oxides and Zeolites 437
19.4.1 Synthesis 437
19.4.2 Structural Characterization 438
19.4.3 Catalysis 442
19.5 Concluding Remarks 443
References 443
Chapter 20 448
A Convergence of Homogeneous and Heterogeneous Catalysis: Immobilized Organometallic Catalysts 448
20.1 Introduction 448
20.2 Immobilized Polymerization Catalysts and Cocatalysts 449
20.3 Recyclability of Immobilized Polymerization Catalysts 454
20.4 Immobilized Palladium Catalysts: True Heterogeneous Catalysis? 457
20.5 Conclusions and Future Directions 460
References 460
Chapter 21 463
Single-Site Heterogeneous Catalysts: Innovations, Advantages, and Future Potential in Green Chemistry and Sustainable Technolog 463
21.1 Introduction 463
21.2 A High-Performance Selective Oxidation System for the Facile Production of Primary, Secondary, and Benzylic Alcohols U 465
21.3 One-Step Production of Niacin (Vitamin B3) and Other Nitrogen-Containing Pharmaceutical Chemicals 466
21.3.1 Selective Oxidation Of 3-Picoline to Nicotinic Acid 468
21.3.2 The Role of the Single-Site Solid Host 469
21.4 High-Performance Nonphosphine-based Single-Site Chiral Catalysts for the Production of Pharmaceutical Intermediates 469
21.5 Bimetallic and Trimetallic Nanocluster Catalysts for Single-Step, Solvent-Free Hydrogenations 472
21.5.1 Adipic Acid from Muconic Acid Using Atomically Engineered Single-Site Nanocluster Catalysts 473
21.5.2 Trimetallic Nanoparticle Single-Site Catalysts for the Single-Step Conversion of Dimethyl terephthalate to 1,4-Cyclo 474
21.5.3 Tin-Containing Nanoclusters for the Selective Hydrogenation of Cyclododecatriene to Cyclododecene 475
21.6 Summary and Future Outlook 477
References 477
Chapter 22 481
Molecular-Imprinted Metal Complexes for the Design of Catalytic Structures 481
22.1 Introduction 481
22.2 Principles of Molecular Imprinting 482
22.3 Molecular Imprinting of Metal Complexes in Bulk Polymers 485
22.4 Molecular-Imprinting of Rh Monomers onto SiO2 Surfaces 488
22.5 Surface Molecular Imprinting of Rh dimer on SiO2 491
22.6 Summary 495
References 495
Chapter 23 500
Heterogeneous Catalyst Design by Multiple Functional Group Positioning in Organic–Inorganic Materials: On the Route to Analogs 500
23.1 Introduction 500
23.1.1 Cooperative Catalysis 501
23.2 Heterogeneous Cooperative Catalysis 503
23.2.1 Flexibility of Support 504
23.2.2 Functionality of Support 504
23.3 Randomly Distributed Bifunctional Catalysts 505
23.3.1 Acid/Thiol Catalysts 506
23.3.2 Amine/Urea Catalysts 507
23.3.3 Acid/Base Catalysts 509
23.4 Functional Group Positioning 511
23.4.1 Imprinting Approaches to Positioning 511
23.4.1.1 Covalent Imprinting 511
23.4.1.2 Noncovalent Imprinting 513
23.4.2 Other Approaches to Positioning 516
23.4.3 Future Directions 519
References 520
Index 522

Erscheint lt. Verlag 11.11.2009
Zusatzinfo XIX, 526 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Chemie Physikalische Chemie
Technik Maschinenbau
Schlagworte catalysis • Cluster • Enzyme mimics • Heterogeneous catalysis • Homogeneous catalysis • model systems • Rioux • single crystals • size-selected clusters • thermodynamics
ISBN-10 0-387-98049-0 / 0387980490
ISBN-13 978-0-387-98049-2 / 9780387980492
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 22,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95