Für diesen Artikel ist leider kein Bild verfügbar.

A Short Introduction to Perturbation Theory for Linear Operators

(Autor)

Buch | Hardcover
162 Seiten
1982
Springer-Verlag New York Inc.
978-0-387-90666-9 (ISBN)
85,55 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
This book is a slightly expanded reproduction of the first two chapters (plus Introduction) of my book Perturbation Theory tor Linear Operators, Grundlehren der mathematischen Wissenschaften 132, Springer 1980. Ever since, or even before, the publication of the latter, there have been suggestions about separating the first two chapters into a single volume. I have now agreed to follow the suggestions, hoping that it will make the book available to a wider audience. Those two chapters were intended from the outset to be a comprehen- sive presentation of those parts of perturbation theory that can be treated without the topological complications of infinite-dimensional spaces. In fact, many essential and. even advanced results in the theory have non- trivial contents in finite-dimensional spaces, although one should not forget that some parts of the theory, such as those pertaining to scatter- ing. are peculiar to infinite dimensions. I hope that this book may also be used as an introduction to linear algebra.
I believe that the analytic approach based on a systematic use of complex functions, by way of the resolvent theory, must have a strong appeal to students of analysis or applied mathematics, who are usually familiar with such analytic tools.

One Operator theory in finite-dimensional vector spaces.- 1. Vector spaces and normed vector spaces.- 1. Basic notions.- 2. Bases.- 3. Linear manifolds.- 4. Convergence and norms.- 5. Topological notions in a normed space.- 6. Infinite series of vectors.- 7. Vector-valued functions.- 2. Linear forms and the adjoint space.- 1. Linear forms.- 2. The adjoint space.- 3. The adjoint basis.- 4. The adjoint space of a normed space.- 5. The convexity of balls.- 6. The second adjoint space.- 3. Linear operators.- 1. Definitions. Matrix representations.- 2. Linear operations on operators.- 3. The algebra of linear operators.- 4. Projections. Nilpotents.- 5. Invariance. Decomposition.- 6. The adjoint operator.- 4. Analysis with operators.- 1. Convergence and norms for operators.- 2. The norm of Tn.- 3. Examples of norms.- 4. Infinite series of operators.- 5. Operator-valued functions.- 6. Pairs of projections.- 7. Product formulas.- 5. The eigenvalue problem.- 1. Definitions.- 2. The resolvent.- 3. Singularities of the resolvent.- 4. The canonical form of an operator.- 5. The adjoint problem.- 6. Functions of an operator.- 7. Similarity transformations.- 6. Operators in unitary spaces.- 1. Unitary spaces.- 2. The adjoint space.- 3. Orthonormal families.- 4. Linear operators.- 5. Symmetric forms and symmetric operators.- 6. Unitary, isometric and normal operators.- 7. Projections.- 8. Pairs of projections.- 9. The eigenvalue problem.- 10. The minimax principle.- 11. Dissipative operators and contraction semigroups.- 7. Positive matrices.- 1. Definitions and notation.- 2. The spectral properties of nonnegative matrices.- 3. Semigroups of nonnegative operators.- 4. Irreducible matrices.- 5. Positivity and dissipativity.- Two Perturbation theory in a finite-dimensional space.- 1. Analytic perturbation of eigenvalues.- 1. The problem.- 2. Singularities of the eigenvalues.- 3. Perturbation of the resolvent.- 4. Perturbation of the eigenprojections and eigennilpotents.- 5. Singularities of the eigenprojections.- 6. Remarks and examples.- 7. The case of T(x) linear in x.- 8. Summary.- 2. Perturbation series.- 1. The total projection for the ?-group.- 2. The weighted mean of eigenvalues.- 3. The reduction process.- 4. Formulas for higher approximations.- 5. A theorem of MOTZKIN-TAUSSKY.- 6. The ranks of the coefficients of the perturbation series.- 3. Convergence radii and error estimates.- 1. Simple estimates.- 2. The method of majorizing series.- 3. Estimates on eigenvectors.- 4. Further error estimates.- 5. The special case of a normal unperturbed operator.- 6. The enumerative method.- 4. Similarity transformations of the eigenspaces and eigenvectors.- 1. Eigenvectors.- 2. Transformation functions.- 3. Solution of the differential equation.- 4. The transformation function and the reduction process.- 5. Simultaneous transformation for several projections.- 6. Diagonalization of a holomorphic matrix function.- 7. Geometric eigenspaces (eigenprojections).- 8. Proof of Theorems.8, 4.9 120.- 9. Remarks on projection families and transformation functions.- 5. Non-analytic perturbations.- 1. Continuity of the eigenvalues and the total projection.- 2. The numbering of the eigenvalues.- 3. Continuity of the eigenspaces and eigenvectors.- 4. Differentiability at a point.- 5. Differentiability in an interval.- 6. Asymptotic expansion of the eigenvalues and eigenvectors.- 7. Operators depending on several parameters.- 8. The eigenvalues as functions of the operator.- 6. Perturbation of symmetric operators.- 1. Analytic perturbation of symmetric operators.- 2. Orthonormal families of eigenvectors.- 3. Continuity and differentiability.- 4. The eigenvalues as functions of the symmetric operator.- 5. Applications. A theorem of LIDSKII.- 6. Nonsymmetric perturbation of symmetric operators.- 7. Perturbation of (essentially) nonnegative matrices.- 1. Monotonicity of the principal eigenvalue.- 2. Convexity of the principal eigenvalue.- Notation index.- Author index.

Erscheint lt. Verlag 4.11.1982
Zusatzinfo biography
Verlagsort New York, NY
Sprache englisch
Gewicht 435 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie
ISBN-10 0-387-90666-5 / 0387906665
ISBN-13 978-0-387-90666-9 / 9780387906669
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99