Dynamical Systems and Chaos
Springer Berlin (Verlag)
978-3-540-12276-0 (ISBN)
Prologue Some ideas about strange attractors.- Chaotic dynamics in Hamiltonian systems with divided phase space.- Periodic and quasi-periodic orbits for twist maps.- Macroscopic behavior in a simple chaotic Hamiltonian system.- Quantum dynamics.- A universal transition from quasi-periodicity to Chaos - Abstract.- Self-generated diffusion and universal critical properties in chaotic systems.- Subharmonics and the transition to chaos.- Low dimensional dynamics and the period doubling scenario.- Strange attractors in fluid dynamics.- Experimental aspects of the period doubling scenario.- Entropy and smooth dynamics.- Imbedding of a one-dimensional endomorphism into a two-dimensional diffeomorphism. Implications.- Strange attractors for differential delay equations.- Stochastic perturbations of some strange attractors.- Solutions of stochastic differential equations and fractal trajectories.- Continuous bifurcation and dissipative structures associated with a soft mode recombination instability in semiconductors.- On the characterization of chaotic motions.- Complex bifurcations in a periodically forced normal form.- Topological entropy and scaling behaviour.- On the analytic structure of chaos in dynamical systems.- Type-III-intermittency in a smooth perturbation of the logistic system.- Irreversible evolution of dynamical systems.- Homoclinic and heteroclinic points in the henon map.- The simple periodic orbits in the unimodal maps.- Modulation properties in decaying processes of the correlation function in a family of t-D maps.- Relaxation times and randomness for a nonlinear classical system.- Topological entropy on rotation sequences.- The taylor-green vortex : Fully developed turbulence and transition to spatial chaos.- Anharmonic systems in external periodic fieldswith chaotic behaviour.- Renormalization of non-analytical unimodal maps.- Critical fluctuations in a thermo-chemical instability.- The second order Melnikov integral applied to detect quasi-randomness.- The Fokker-Planck equation as a dynamical system.- On integrability of quadratic area preserving mappings in the plane.- Resonances: Key elements to the understanding of non linear oscillations.- On systems passing through resonances.- The Lyapunov characteristic numbers and the number of isolating integrals in galactic models.- On the periodic orbits of the Contopoulos Hamiltonian.- Feasibility of calculating dimension and topological entropy.- Diffusions generated from dynamical systems.- Report on the driven Josephson equation.
Erscheint lt. Verlag | 1.4.1983 |
---|---|
Reihe/Serie | Lecture Notes in Physics |
Zusatzinfo | XIV, 298 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 554 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Chaos • Chaos (Math.) • Dynamical system • Dynamical Systems • Dynamisches System |
ISBN-10 | 3-540-12276-1 / 3540122761 |
ISBN-13 | 978-3-540-12276-0 / 9783540122760 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich