Classical Mechanics
Springer Berlin (Verlag)
978-3-642-03433-6 (ISBN)
lt;p>This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems.
The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics.
The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.
Prof. Dr. rer. nat. Dr. h. c. mult. Walter Greiner, geb. Oktober 1935 im Thüringer Wald, Promotion 1961 in Freiburg im Breisgau, 1962-64 Assistent Professor an der University of Maryland, seit 1964/65 ordentlicher Professor für Theoretische Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main und Direktor des Instituts für Theoretische Physik. Gastprofessuren unter anderem an der Florida State University, University of Virginia, Los Alamos Scientific Laboratory, University of California Berkeley, Oak Ridge National Laboratory, University of Melbourne, Yale University, Vanderbilt University, University of Arizona. Hauptarbeitsgebiete sind die Struktur und Dynamik der elementaren Materie (Quarks, Gluonen, Mesonen, Baryonen, Atomkerne), Schwerionenphysik, Feldtheorie (Quantenelektrodynamik, Eichtheorie der schwachen Wechselwirkung, Quantenchromodynamik, Theorie der Gravitation), Atomphysik. 974 Empfänger des Max-Born-Preises und der Max-Born-Medaille des Institute of Physics (London) und der Deutsche Physikalische Gesellschaft, 1982 des Otto-Hahn-Preises der Stadt Frankfurt am Main, 1998 der Alexander von Humboldt-Medaille, 1999 Officier dans l'Ordre des Palmes Academiques. Inhaber zahlreicher Ehrendoktorwürden (unter anderem der University of Witwatersrand, Johannesburg, der Universite Louis Pasteur Strasbourg, der UNAM Mexico, der Universitäten Bucharest, Tel Aviv, Nantes, St. Petersburg, Moskau, Debrecen, Dubna und anderen) sowie Ehrenprofessuren (University of Bejing, China, und Jilin University Changchun, China) und Ehrenmitglied vieler Akademien.
Part I. Newtonian mechanics in moving co-ordinate systems.- Newton's Equations in a Rotating Coordinate System.- Free fall on the rotating earth.- Foucault's pendulum.- Part II. Mechanics of Particle Systems.- Degrees of Freedom.- Centre of gravity. Mechanical fundamental quantities of systems of mass points.- Part III. Vibrating systems.- Vibrations of coupled mass points.- The vibrating string.- Fourier series.- The vibrating membrane.- Part IV. Mechanics of Rigid Bodies.- Rotation about fixed axis.- Rotation about a point. Theory of the top.- Part V. Lagrange equations.- Generalized co-ordinates.- D'Alembert principle and derivation of the Lagrange equations.- Lagrange equations for non-holonomic constraints.- Special problems (for deepening).- Part VI. Hamilton Theory.- Hamilton's equations.- Canonical transformations.- Hamilton-Jacobi theory.- Extended Hamilton-Lagrange formalism.- Extended Hamilton-Jacobi equation.- Part VII. Nonlinear Dynamics.- Dynamical systems.- Stability of time-dependent paths.- Bifurcations.- Lyapunov exponents and chaos.- Systems with chaotic dynamics.- Part VIII. On the history of mechanics.- Emergency of Occidental Physics in the Seventeenth Century.
Erscheint lt. Verlag | 17.12.2009 |
---|---|
Reihe/Serie | Classical Theoretical Physics |
Zusatzinfo | XVIII, 580 p. 280 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 193 x 260 mm |
Gewicht | 888 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Mechanik |
Schlagworte | Classical Dynamics • classical mechanics • D'Alembert principle • degrees of freedom • Hamilton L • Hamilton Lagrange Formalism • Hamiltonsche Mechanik • Hamilton Theory • Lagrange Equation • Mass point • Mechanics Particle System • Mechanik; Handbuch/Lehrbuch • Newton Equation • Newtonian Mechanics • Nonlinear Dynamics • Textbook Analytical Mechanics • Textbook Classical Mechanics • Textbook mechanics • Textbook Physics Mechanics • Textbook theoretical physics |
ISBN-10 | 3-642-03433-0 / 3642034330 |
ISBN-13 | 978-3-642-03433-6 / 9783642034336 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich