Exercise Biochemistry - Vassilis Mougios

Exercise Biochemistry

Buch | Hardcover
496 Seiten
2019 | 2nd edition
Human Kinetics (Verlag)
978-1-4925-2904-0 (ISBN)
127,20 inkl. MwSt
Exercise Biochemistry, Second Edition, offers a clear explanation of how exercise affects molecular-level functioning in athletes and nonathletes, both healthy and diseased.
Exercise Biochemistry, 2nd Edition translates a potentially difficult and technical subject into a clear explanation of how exercise affects molecular-level functioning. The text is written in a very conversational style making it an ideal resource for students.
This new second edition has been significantly updated to include the latest research. It includes coverage of metabolism, endocrinology and assessment all in one volume. Other updates to this second edition include new chapters, examinations of caffeine as an ergogenic acid and up-to-date findings on how different types of exercise can affect lipid metabolism.
To help with student learning, Exercise Biochemistry incorporates chapter objectives, summaries, key terms, sidebars and questions throughout. Split into four parts, the first section introduces students to biochemistry basics. The second part applies the basic to explore neural control of movement and muscle activity. The third section details exercise metabolism related to carbohydrates, lipids and protein. And, the final section covers biochemical assessment of people who exercise.
Exercise Biochemistry, 2nd Edition is an authoritative resource that arms future sport and exercise scientists with a clear understanding of the effects of exercise on the function of the human body.

Vassilis Mougios is a professor of exercise biochemistry at the University of Thessaloniki in Greece. He has been a teacher of exercise biochemistry, sport nutrition and ergogenic aspects of sport for 30 years. Prior to that Mougios served on the Scientific Committee of the 2004 Pre-Olympic Congress. He has coauthored many articles in international scientific journals and has done research on muscle contraction, exercise metabolism, biochemical assessment of athletes and sport nutrition. Mougios is a member of the American College of Sports Medicine (ACSM) and the American Physiological Society. He is also a fellow and member of the reviewing panel of the European College of Sport Science (ECSS).

Contents
Preface
A Guided Tour for the Student

Part I Biochemistry Basics
Chapter 1 Introduction

-1.1 Chemical Elements

-1.2 Chemical Bonds

-1.3 Molecules

-1.4 Ions

-1.5 Polarity Influences Miscibility

-1.6 Solutions

-1.7 Chemical Reactions and Equilibrium

-1.8 pH

-1.9 Acid-Base Interconversions

-1.10 Classes of Biological Substances

-1.11 Cell Structure

-Problems and Critical Thinking Questions
Chapter 2 Metabolism

-2.1 Free-Energy Changes Earmark Metabolic Reactions

-2.2 Determinants of Free-Energy Change

-2.3 ATP, the Energy Currency of Cells

-2.4 Phases of Metabolism

-2.5 Oxidation-Reduction Reactions

-2.6 Overview of Catabolism

-Problems and Critical Thinking Questions
Chapter 3 Proteins

-3.1 Amino Acids

-3.2 The Peptide Bond

-3.3 Primary Structure of Proteins

-3.4 Secondary Structure

-3.5 Tertiary Structure

-3.6 Denaturation

-3.7 Quaternary Structure

-3.8 Protein Function

-3.9 Oxygen Carriers

-3.10 Myoglobin

-3.11 Hemoglobin

-3.12 The Wondrous Properties of Hemoglobin

-3.13 Enzymes

-3.14 The Active Site

-3.15 Enzymes Affect the Rate but not the Direction of Reactions

-3.16 Factors Affecting the Rate of Enzyme Reactions

-Problems and Critical Thinking Questions
Chapter 4 Nucleic Acids and Gene Expression

-4.1 Introducing Nucleic Acids

-4.2 Flow of Genetic Information

-4.3 Deoxyribonucleotides, the Building Blocks of DNA

-4.4 Primary Structure of DNA

-4.5 The Double Helix of DNA

-4.6 The Genome of Living Organisms

-4.7 DNA Replication

-4.8 Mutations

-4.9 RNA

-4.10 Transcription

-4.11 Genes and Gene Expression

-4.12 Messenger RNA

-4.13 Translation

-4.14 The Genetic Code

-4.15 Transfer RNA

-4.16 Translation Continued

-4.17 In The Beginning, RNA?

-Problems and Critical Thinking Questions
Chapter 5 Carbohydrates and Lipids

-5.1 Carbohydrates

-5.2 Monosaccharides

-5.3 Oligosaccharides

-5.4 Polysaccharides

-5.5 Lipids

-5.6 Fatty Acids

-5.7 Triacylglycerols

-5.8 Phospholipids

-5.9 Steroids

-5.10 Cell Membranes

-Problems and Critical Thinking Questions
Part I Summary

Part II Biochemistry of the Neural and Muscular Processes of Movement
Chapter 6 Neural Control of Movement

-6.1 Nerve Signals Are Transmitted in Two Ways

-6.2 The Resting Potential

-6.3 The Action Potential

-6.4 Propagation of an Action Potential

-6.5 Transmission of a Nerve Impulse from One Neuron to Another

-6.6 Birth of a Nerve Impulse

-6.7 The Neuromuscular Junction

-6.8 A Lethal Arsenal at the Service of Research

-Problems and Critical Thinking Questions
Chapter 7 Muscle Contraction

-7.1 Structure of a Muscle Cell

-7.2 The Sliding-Filament Theory

-7.3 The Wondrous Properties of Myosin

-7.4 Structure of Myosin

-7.5 Actin

-7.6 Sarcomere Architecture

-7.7 Mechanism of Force Generation

-7.8 Myosin Isoforms and Muscle Fiber Types

-7.9 Control of Muscle Contraction

-7.10 Excitation-Contraction Coupling

-Problems and Critical Thinking Questions
Part II Summary

Part III Exercise Metabolism
III.1 Principles of Exercise Metabolism
III.2 Exercise Parameters
III.3 Experimental Models Used to Study Exercise Metabolism
III.4 Five Means of Metabolic Control in Exercise
III.5 Four Classes of Energy Sources in Exercise

Chapter 8 Compounds of High Phosphoryl Transfer Potential

-8.1 The ATP-ADP Cycle

-8.2 The ATP-ADP Cycle in Exercise

-8.3 Creatine Phosphate

-8.4 Window to the Sarcoplasm

-8.5 Loss of AMP by Deamination

-Problems and Critical Thinking Questions
Chapter 9 Carbohydrate Metabolism in Exercise

-9.1 Glycogen Metabolism

-9.2 Exercise Speeds up Glycogenolysis in Muscle

-9.3 The Cyclic-AMP Cascade

-9.4 Recapping the Effect of Exercise on Glycogen Metabolism

-9.5 Glycolysis

-9.6 Exercise Speeds up Glycolysis in Muscle

-9.7 Pyruvate Oxidation

-9.8 Exercise Speeds up Pyruvate Oxidation in Muscle

-9.9 The Citric Acid Cycle

-9.10 Exercise Speeds up the Citric Acid Cycle in Muscle

-9.11 The Electron Transport Chain

-9.12 Oxidative Phosphorylation

-9.13 Energy Yield of the Electron Transport Chain

-9.14 Energy Yield of Carbohydrate Oxidation

-9.15 Exercise Speeds up Oxidative Phosphorylation in Muscle

-9.16 Lactate Production in Muscle During Exercise

-9.17 Features of the Anaerobic Carbohydrate Catabolism

-9.18 Utilizing Lactate

-9.19 Gluconeogenesis

-9.20 Exercise Speeds up Gluconeogenesis in the Liver

-9.21 The Cori Cycle

-9.22 Exercise Speeds up Glycogenolysis in the Liver

-9.23 Control of the Plasma Glucose Concentration in Exercise

-9.24 Blood Lactate Accumulation

-9.25 Blood Lactate Removal

-9.26 “Thresholds”
Problems and Critical Thinking Questions
Chapter 10 Lipid Metabolism in Exercise

-10.1 Triacylglycerol Metabolism in Adipose Tissue

-10.2 Exercise Speeds up Lipolysis

-10.3 Fate of the Lipolytic Products During Exercise

-10.4 Fatty Acid Degradation

-10.5 Energy Yield of Fatty Acid Oxidation

-10.6 Fatty Acid Synthesis

-10.7 Exercise Speeds up Fatty Acid Oxidation in Muscle

-10.8 Changes in the Plasma Fatty Acid Concentration and Profile During Exercise

-10.9 Interconversion of Lipids and Carbohydrates

-10.10 Plasma Lipoproteins

-10.11 A Lipoprotein Odyssey

-10.12 Effects of Exercise on Plasma Triacylglycerols

-10.13 Effects of Exercise on Plasma Cholesterol

-10.14 Exercise Increases Ketone Body Formation

-Problems and Critical Thinking Questions
Chapter 11 Protein Metabolism in Exercise

-11.1 Protein Metabolism

-11.2 Effect of Exercise on Protein Metabolism

-11.3 Amino Acid Metabolism in Muscle During Exercise

-11.4 Amino Acid Metabolism in the Liver During Exercise

-11.5 The Urea Cycle

-11.6 Amino Acid Synthesis

-11.7 Plasma Amino Acid, Ammonia, and Urea Concentrations During Exercise

-11.8 Contribution of Proteins to the Energy Expenditure of Exercise

-11.9 Effects of Training on Protein Metabolism

-Critical Thinking Questions
Chapter 12 Effects of Exercise on Gene Expression

-12.1 Stages in the Control of Gene Expression

-12.2 Which Stages in the Control of Gene Expression Does Exercise Affect?

-12.3 Kinetics of a Gene Product After Exercise

-12.4 Exercise-Induced Changes that May Modify Gene Expression

-12.5 Mechanisms of Exercise-Induced Muscle Hypertrophy

-12.6 Mechanisms of Exercise-Induced Mitochondrial Biogenesis

-Problems and Critical Thinking Questions
Chapter 13 Integration of Exercise Metabolism

-13.1 Interconnections of Metabolic Pathways

-13.2 Energy Systems

-13.3 Energy Sources in Exercise

-13.4 Choice of Energy Sources During Exercise

-13.5 Effect of Exercise Intensity on the Choice of Energy Sources

-13.6 Effect of Exercise Duration on the Choice of Energy Sources

-13.7 Interaction of Duration and Intensity: Energy Sources in Running and Swimming

-13.8 Effect of the Exercise Program on the Choice of Energy Sources

-13.9 Effect of Heredity on the Choice of Energy Sources in Exercise

-13.10 Conversions of Muscle Fiber Types

-13.11 Effect of Nutrition on the Choice of Energy Sources During Exercise

-13.12 Adaptations of the Proportion of Energy Sources During Exercise to Endurance Training

-13.13 How Does Endurance Training Modify the Proportion of Energy Sources During Exercise?

-13.14 Adaptations of Energy Metabolism to Anaerobic Training

-13.15 Effect of Age on the Choice of Energy Sources During Exercise

-13.16 Do Sex and Ambient Temperature Affect the Choice of Energy Sources During Exercise?

-13.17 The Proportion of Fuels Can Be Measured Bloodlessly

-13.18 Hormonal Effects on Exercise Metabolism

-13.19 Fatigue

-13.20 Central Fatigue

-13.21 Peripheral Fatigue

-13.22 Restoration of the Energy State After Exercise

-13.23 Metabolic Changes in Detraining

-Problems and Critical Thinking Questions
Part III Summary

Part IV Biochemical Assessment of Exercising Persons
IV.1 The Blood
IV.2 Aims and Scope of the Biochemical Assessment
IV.3 The Reference Interval
IV.4 Classes of Biochemical Parameters

Chapter 14 Iron Status

-14.1 Hemoglobin

-14.2 Hematologic Parameters

-14.3 Does Sports Anemia Exist?

-14.4 Iron

-14.5 Total Iron-Binding Capacity

-14.6 Transferrin Saturation

-14.7 Soluble Transferrin Receptor

-14.8 Ferritin

-14.9 Iron Deficiency

-Problems and Critical Thinking Questions
Chapter 15 Metabolites

-15.1 Lactate

-15.2 Estimating the Anaerobic Lactic Capacity

-15.3 Programming Training

-15.4 Estimating Aerobic Endurance

-15.5 Glucose

-15.6 Triacylglycerols

-15.7 Cholesterol

-15.8 HDL Cholesterol

-15.9 LDL Cholesterol

-15.10 Recapping Cholesterol

-15.11 Glycerol

-15.12 Urea

-15.13 Ammonia

-15.14 Creatinine

-Problems and Critical Thinking Questions
Chapter 16 Enzymes and Hormones

-16.1 Enzymes

-16.2 Creatine Kinase

-16.3 Aminotransferases

-16.4 Steroid Hormones

-16.5 Cortisol

-16.6 Testosterone

-16.7 Overtraining

-16.8 Epilogue

-Problems and Critical Thinking Questions
Part IV Summary

References
Suggested Readings
Answers to Problems and Critical Thinking Questions
Glossary
Index
About the Author

Erscheinungsdatum
Verlagsort Champaign, IL
Sprache englisch
Maße 216 x 279 mm
Gewicht 5 g
Themenwelt Literatur Briefe / Tagebücher
Medizin / Pharmazie Medizinische Fachgebiete Sportmedizin
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Biochemie
ISBN-10 1-4925-2904-4 / 1492529044
ISBN-13 978-1-4925-2904-0 / 9781492529040
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

Buch (2023)
Thieme (Verlag)
110,00
Lehrbuch

von Erwin-Josef Speckmann; Jürgen Hescheler …

Buch | Hardcover (2024)
Urban & Fischer in Elsevier (Verlag)
89,00