Marginal Space Learning for Medical Image Analysis - Yefeng Zheng, Dorin Comaniciu

Marginal Space Learning for Medical Image Analysis

Efficient Detection and Segmentation of Anatomical Structures
Buch | Softcover
268 Seiten
2016 | Softcover reprint of the original 1st ed. 2014
Springer-Verlag New York Inc.
978-1-4939-5575-6 (ISBN)
53,49 inkl. MwSt
Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.

Introduction.- Marginal Space Learning.- Comparison of Marginal Space Learning and Full Space Learning in 2D.- Constrained Marginal Space Learning.- Part-Based Object Detection and Segmentation.- Optimal Mean Shape for Nonrigid Object Detection and Segmentation.- Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation.- Applications of Marginal Space Learning in Medical Imaging.- Conclusions and Future Work.

Erscheinungsdatum
Zusatzinfo 58 Illustrations, color; 64 Illustrations, black and white; XX, 268 p. 122 illus., 58 illus. in color.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Radiologie
Schlagworte 3D medical image data • Anatomical structure detection • Artificial Intelligence • Computed tomography • human body parsing • human organ pose estimation • intelligent image analysis system • machine learning • Magnetic Resonance Imaging • marginal space learning • Medical Image Analysis • Medical image segmentation • Medical Imaging • Object detection • organ segmentation • Ultrasound
ISBN-10 1-4939-5575-6 / 1493955756
ISBN-13 978-1-4939-5575-6 / 9781493955756
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95