Handbook of Biomaterial Properties (eBook)
XVIII, 676 Seiten
Springer New York (Verlag)
978-1-4939-3305-1 (ISBN)
This book provides tabular and text data relating to normal and diseased tissue materials and materials used in medical devices. Comprehensive and practical for students, researchers, engineers, and practicing physicians who use implants, this book considers the materials aspects of both implantable materials and natural tissues and fluids. Examples of materials and topics covered include titanium, elastomers, degradable biomaterials, composites, scaffold materials for tissue engineering, dental implants, sterilization effects on material properties, metallic alloys, and much more. Each chapter author considers the intrinsic and interactive properties of biomaterials, as well as their appropriate applications and historical contexts. Now in an updated second edition, this book also contains two new chapters on the cornea and on vocal folds, as well as updated insights, data, and citations for several chapters.
Foreword 5
Introduction 7
Contents 10
Contributors 13
Part I 17
Chapter A1Cortical Bone 18
A1.1 Composition 18
A1.1.1 Overall 18
A1.1.2 Organic 18
A1.1.3 Mineral 19
A1.1.4 Cement line 19
A1.2 Physical Properties 19
A1.2.1 Density 19
A1.2.2 Electromechanical behavior 19
A1.2.3 Other Physical Properties 20
A1.3 Mechanical Properties 20
A1.3.1 General 20
A1.3.2 Stiffness 21
A1.3.3 Strength 24
Additional Reading 26
References 27
Chapter A2Cancellous Bone 29
A2.1 Microstructure 29
A2.2 Tissue Composition and Ultrastructure 30
A2.3 Mechanical Properties 30
A2.3.1 Elastic Modulus and Strength 30
A2.3.2 Viscoelastic and Fatigue Properties 32
A2.3.3 Fracture Toughness 33
A2.3.4 Post-Yield and Damage Behavior 33
A2.4 Tissue-Level Mechanical Properties 34
References 34
Chapter A3: Dentin and Enamel 36
A3.1 Introduction 36
A3.1.1 Structure of human dentition: 36
A3.2 Composition 37
A3.3 Final Comments 46
Additional Reading 47
References 48
Chapter B1: Cartilage 50
B1.1 Introduction 50
B1.1.1 Articular cartilage 50
B1.1.2 Fibrocartilage 51
B1.1.3 Elastic cartilage 51
B1.2 Composition 51
B1.3 Mechanical Properties of Articular Cartilage 51
B1.3.1 Compression (Table B1.2) 51
B1.3.2 Tensile (Table B1.3) 52
B1.3.3 Shear(Table B1.4) 53
B1.3.4 Poisson’s ratio 54
B1.3.5 Permeability 54
B1.3.6 Articular cartilage tribologic properties 54
B1.4 Fibrocartilage Mechanical Properties 55
B1.5 Elastic Cartilage Mechanical Properties 55
Additional Reading 55
References 56
Chapter B2: Fibrocartilage 57
B2.1 Introduction 57
B2.2 Structure and Composition 57
B2.3 Hydraulic Permeability and Drag Coefficients 59
B2.4 Elastic Properties 60
B2.5 Viscoelastic Behavior 61
B2.6 Discussion 63
Additional Reading 63
References 64
Chapter B3: Ligament and Tendon 67
B3.1 Structure 67
B3.2 Composition 68
B3.3 Normal T/L Function 69
B3.4 Injured T/L Function 72
B3.5 Conclusions 72
References 73
Chapter B4: Skin and Muscle 75
B4.1 Introduction 75
B4.2 In-Vivo Mechanical Properties 75
B4.2.1 Doppler Results 75
B4.2.2 Indentation results 76
Additional Reading 77
References 78
Chapter B5: Brain Tissues 79
B5.1 Introduction 79
B5.2 Composition 80
B5.2.1 Mass [2] 80
B5.2.2 Dimensions and shape [2] 80
B5.2.3 Density (adult) in kg/m3 81
B5.3 Mechanical Properties 81
B5.3.1 Bulk modulus 81
B5.3.2 Poisson’s ratio 81
B5.3.3 Elastic and shear moduli 81
B5.3.4 Creep modulus 81
B5.4 Electrical Properties 81
B5.4.1 Electrical conductivity temperature coefficient [14] 81
B5.5 Thermal Properites 86
B5.6 Diffusion Properties 86
5.6.1 Sucrose (feline brain) [22] 86
B5.6.2 Small ions [23] 86
5.6.3 Large molecules (> 150 angstrom): [23]
B5.7 Comments 87
Additional Reading 87
References 88
Chapter B6: Arteries, Veins and Lymphatic Vessels 89
B6.1 Introduction 89
B6.2 Morphometry of the Arterial Tree and Venous System 90
B6.3 Constituents of the Arterial Wall 91
B6.3.1 Normal arterial wall 91
B6.4 Constituents of the venous wall 96
B6.4.1 Normal venous wall 96
B6.4.2 Changes with age in composition of normal venous tissues 97
B6.5 Mechanical Properties of Arteries 98
B6.5.1 Static mechanical properties of arteries 98
B6.5.2 Compliance, pressure cross-sectional area relationship, and retraction 100
B6.5.3 Tensile properties of human arteries 100
B6.5.4 Dynamic mechanical properties of arteries 102
B6.5.5 Creep and stress relaxation 103
B6.6 Mechanical Properties of veins 105
B6.6.1 Static mechanical properties of veins 105
B6.6.2 Tensile properties of veins 106
B6.7 Mechanical Characteristics of Lymphatic Vessels 107
B6.8 Transport Properties of blood Vessels 107
B6.9 Effect of Age, Hypertension and Atherosclerosis on blood Vessels 108
B6.9.1 Age 108
B6.9.2 Hypertension 108
B6.9.3 Atherosclerosis 108
B6.10 Final Comments 109
Additional Reading 110
References 111
Chapter B7: The Intraocular Lens 114
B7.1 Introduction 114
B7.2 Compendium of Physicochemical Characteristics of the Human Lens 115
References 123
Chapter C1Blood and Related Fluids 125
C1.1—Introduction 125
Additional Reading 133
References 134
Chapter C2: The Vitreous Humor 135
C2.1 Introduction 135
C2.1.1 Compendium of Physicochemical Characteristics of the Human Vitreous Humor 136
References 142
Chapter C3The Cornea 145
C3.1 Introduction 145
C3.2 Compendium of Physicochemical Characteristics of the Cornea 146
Additional Reading 154
Recommended sources for ophthalmic terminology: 155
References 155
Part II 159
Chapter 1a: Metallic Biomaterials: Introduction 160
1a.1 Introduction 160
1a.2 Alloys and Their Applications 161
1a.3 Mechanical Properties 162
1a.4 Corrosion and Inertness 162
1a.5 Biofunctionality 163
1a.6 Future Directions 165
References 166
Chapter 1b: Metallic Biomaterials: Cobalt-Chromium Alloys 168
1b.1 Introduction 168
1b.2 ASTM F75 168
1b.3 ASTM F799 170
1b.4 ASTM F90 170
1b.5 ASTM F562 171
1b.6 Other Types of CoCr Alloy Investigated for Biomedical Applications 172
1b.7 ASTM F563 173
1b.8 ASTM F1058 173
1b.9 UNS R30005 173
References 175
Chapter 1c: Metallic Biomaterials: Titanium and Titanium Alloys 176
1c.1 Composition 176
1c.2 Physical Properties 177
1c.3 Processing of cp-Ti and Ti Alloys 178
1c.3.1 Hot Working and Heat Treatment 178
1c.3.2 Working of Sheet 179
1c.3.3 Descaling 180
1c.3.4 Machining 181
1c.3.5 Soldering and Brazing 181
1c.3.6 Welding 182
1c.4 Mechanical Properties 183
1c.5 Fatigue 187
1c.6 Corrosion and Wear 191
1c.7 Biological Properties 194
1c.8 Nitinol: Shape Memory 195
References 196
Chapter 1dDental Restoration Materials 199
1D.1 Amalgams 199
1d.1.1 Composition of alloys 199
1d.1.2 Physical properties 199
1d.1.3 General properties and processing 200
Processing of dental amalgams 201
1d.1.4 Mechanical properties 201
1d.1.5 Corrosion and wear 201
Corrosion of amalgams 202
1. Corrosion of conventional amalgams 202
2. Corrosion of the high copper type amalgams 202
1D.2 Noble Metals 206
1d.2.1 Composition of alloys 206
1d.2.2 Physical properties 206
1d.2.3 Processing of Precious Metal Alloys (Ref. 2, 5, 8) 206
Casting 206
Heat Treatment 207
Brazing 207
Bonding with Ceramics 207
1d.2.4 Mechanical properties 208
1d.2.5. Corrosion and wear 209
1D.3 CoCr-Alloys 210
1D.4 NiCr-Alloys (Ref. 9, 10, 11) 210
References 211
Chapter 2 Composite Materials 212
2.1 Types of Composites and Component Materials 212
2.2 Fibre Types and Properties 212
2.2.1 Glass Fibers 215
2.2.2 Aramid Fibers 216
2.2.3 Boron Fibers 216
2.2.4 Graphite Fibers 216
2.3 Matrix Materials 217
2.4 Thermoplastic Matrix 217
2.5 Thermosets Matrix 218
2.6 Vinyl Ester Resins 218
2.7 Epoxide Resins 219
2.8 Diluents 219
2.8.1 Reactive Diluents 219
2.8.2 Non Reactive Diluents 220
2.9 Curing Agents for Epoxide Resins 220
2.9.1 Amine Curing Agents 220
2.9.2 Anhydride Curing Agent 221
2.9.3 Accelerators for Anhydride Cured Systems 221
2.9.4 Polyamide Curing Agents 221
2.9.5 Other Curing Agents 222
2.10 Polyester Resins 222
2.10.1 Catalysts or Initiators 222
2.10.2 Accelerators or Promotors 223
2.11 Laminate Properties 223
2.12 Composite Fabrication 227
2.12.1 Hand Lay-Up and Spray-Up Procedures 227
2.12.2 Centrifugal Casting 227
2.12.3 Matched Die Molding 228
2.12.4 Filament winding 231
2.12.5 Wet lay-up 231
2.12.6 Centrifugal Moulding 233
2.12.7 Continuous Sheet Manufacture 235
2.12.8 Pultrusion 236
2.13 Mechanical Properties 237
2.14 Antioxidants and Effect of Environmental Exposure 251
2.15 The Radiation Stability of Commercial Materials 252
2.16 Polymers Aging 257
2.17 Composite Materials in Medicine 257
2.17.1 Carbons In Heart Valve Prostheses 258
2.17.2 Wound Closure Biomaterials 259
2.18 Metal Matrix Composites 259
2.18.1 Matrix Materials 260
2.18.2 Reinforcements 260
2.19 Ceramic Matrix Composites 263
References 265
Chapter 3: Thermoplastic Polymers In Biomedical Applications: Structures, Properties and Processing 267
3.1 Introduction 267
3.2 Polyethylene 269
3.3 Polypropylene 270
3.4 Polyurethane 271
3.5 Polytetrafluoroethylene 272
3.6 Polyvinylchloride 273
3.6.1 Unplasticized PVC 273
3.6.2 Plasticized PVC 273
3.7 Polyamides 274
3.8 Polyacrylates 274
3.9 Polyacetal 275
3.10 Polycarbonate 276
3.11 Polyethylene Terephthalate 277
3.12 Polyetheretherketone 278
3.13 Polysulfone 278
References 296
Chapter 4Biomedical elastomers 297
4.1 Introduction 297
4.2 Types of Elastomer 298
4.2.1 Thermoplastic elastomers 298
4.2.2 crosslinked elastomers 316
4.3 Establishing Equivalence 323
4.3.1 FDA Guidance document for substitution of equivalent elastomers 323
4.3.2 Equivalent silicone elastomers 340
4.4 Sterilization of Elastomers 341
4.4.1 Sterilization methods 341
4.5 Relevant ASTM Standards 341
4.6 Biocompatibility 341
4.7 Sources 343
Chapter 5Oxide Bioceramics: Inert Ceramic Materials in Medicine and Dentistry 344
5.1 Introduction 344
5.2 Short History 344
5.3 Material Properties and Processing 346
5.3.1 Materials properties 346
Aluminium oxide: alumina 347
Physical and mechanical properties 347
Chemical properties 348
Wear resistance 348
Clinical performance 349
Zirconium dioxide: zirconia 349
Partially stabilized zirconia (PSZ) and tetragonal zirconia polycrystals (TZP) 349
Physical and mechanical properties 349
Fracture toughness mechanisms: 351
Wear resistance and chemical stability: 351
Clinical performance 351
5.3.2 Materials processing 352
5.4 Biocompatibility of Oxide Bioceramics 352
5.5 Applications 353
5.5.1 Orthopaedic applications 353
5.5.2 Dental applications 355
5.6 Manufacturers and Their Implant Products 355
5.7 Problems and Future Prospects 356
References 356
Chapter 6: Ceramic Materials Testing and Fracture Mechanics 358
6.1 Introduction 358
6.1.1 Ductile and Brittle Behaviour 358
6.1.2 Microstructure 359
6.1.2.1 Effect of Grain Size 359
6.1.2.2 Strength of Individual Grains 360
6.1.2.3 Multiphase and Multicomponent Structures 360
6.1.3 Porosity 360
6.1.4 Valency Type 361
6.2 Strength Testing of Ceramics 361
6.2.1 Tensile Testing 361
6.2.2 Ceramic Machining 362
6.2.3 Test Pieces 362
6.2.4 Flexion and Flexure Testing 362
6.2.5 Beam Theory [12] 362
6.2.5.1 Rectangular Section Test Piece 364
6.2.6 3 and 4 Point Bending 365
6.2.6.1 Calculation of Deflections 366
6.2.6.2 Simple Cantilever 366
6.2.6.3 Three-Point Bend 367
6.2.6.4 Four-Point Bend 368
6.2.7 Test Configurations 370
6.2.7.1 Biaxial Flexure of Discs 370
6.2.7.2 Diametrical Compression Test [19, 29] 371
6.2.7.3 Brittle Ring Test [19, 31] 372
6.2.7.4 Theta Specimen [13, 14, 19] 372
6.2.8 Significance of Test Results 373
6.2.9 Processing of Failure Data [7] 374
6.2.10 Ranking (or How We Arrive at the Value of F) 377
6.2.11 Nature of the Test [7] 379
6.2.12 Volume of Test Piece [7] 382
6.3 Strength of Solids [11] 382
6.3.1 Theoretical Strength of Crystals 382
6.3.2 Elastic Constants and Interatomic Forces [11] 384
6.3.3 Griffith’s Theory [2] 386
6.3.3.1 Basic Derivation of Expression 386
6.3.4 Griffith’s Criterion [2] 389
6.3.5 Energy Release Rate 390
6.3.6 Geometric Illustration of Compliance 392
6.3.7 Analytical illustration of Compliance 393
6.3.7.1 Practical Methods [1] 395
6.3.8 Experimental Technique for Compliance: Calculating of ? [10] 396
6.3.8.1 Compliance Results 397
6.3.9 Work of Fracture 397
6.3.10 Significance of ?o, the Fracture Energy 401
6.3.11 Double Cantilever Bean [15] 401
6.4 Stress Concentrators 403
6.4.1 Elliptical Cracks [1, 2] 403
6.4.2 K1 Values for Specific Crack Systems [2] 406
6.4.3 Crack Propagation [1, 2, 4, 5, 20] 409
6.4.4 K4 Application: Stress Analysis at Crack Tip 410
6.4.4.1 Mode 1 Stresses 411
6.4.4.2 Mode 1 Displacements 411
6.4.4.3 For Mode 2 411
6.4.4.4 For Mode 2 Displacements 412
6.4.4.5 For Mode 3 412
6.4.5 The Application of K1 in terms of is a Materials Property [2] 412
6.4.6 Crack Stability 414
6.5 Testing Methods for Determination of K1 [6] 417
6.5.1 Notched Bar (S.E.N.B.) 417
6.5.2 The Double Torsion Method [3, 16, 21, 24, 30] 419
6.5.2.1 Double Torsion Test Piece 419
6.5.3 Double Cantilever Beam 422
6.5.4 The “C” Specimen 425
6.5.5 Short Rod, Short Bar or “Stub” Test Piece 426
6.5.6 Indentation Methods 428
6.6 Time Dependence of Strength [3] 431
6.6.1 Stress Corrosion 431
6.6.2 The SPT Diagram 433
6.6.2.1 Procedure 435
6.6.2.2 Application 435
6.6.3 Proof Testing [3, 22] 435
6.7 Ceramic Hip Joints Endoprosthesis 438
6.7.1 Finite Element Analysis (FEA) 438
6.7.1.1 Load Cases 439
6.7.1.2 Restraints 439
6.7.1.3 Results and Conclusions from FEA 439
6.7.1.4 Shape Factors 440
6.7.1.5 Application of Load 440
6.7.2 Weibull Equation 440
6.7.3 A Design solution to the Stem Fixation Problem 447
6.7.4 Summary and Conclusions 447
6.7.5 Alternatives Approach to Design 448
References 449
Chapter 7Properties of Bioactive Glasses and Glass-ceramics 451
7.2 Bioactive Bonding 451
7.3 Bioactive Compositions 453
7.4 Physical Properties 454
References 458
Chapter 8Wear 459
8.1 Introduction 459
In Vitro Wear Testing 463
Linear Clinical Wear 490
Conclusion 491
References 493
Chapter 9Degradation/resorption in Bioactive Ceramics in Orthopaedics 498
9.1 Introduction 498
9.2 In Vitro Physico-chemical Dissolution Processes 499
9.3 In Vivo/in Vitro Biological Degradation Processes 502
9.3.1 Animal experiments and clinical applications 502
9.3.2 Cell cultures 507
9.4 Summary 508
References 508
Chapter 10Corrosion of Metallic Implants 511
10.1 General Aspects 511
10.1.1 Incidence of corrosion 511
10.1.2 Potential-pH (Pourbaix) diagrams 512
10.2 Aspects Related to the Metal Composition 514
10.2.1 Importance of materials purity in improving the corrosion resistance 514
10.2.2. Type of metallic material and influence of alloying 514
10.2.3 Site for attack 517
10.2.4. Combinations of different materials 517
10.3 Aspects Related to The Physiological Environment 519
10.3.2 Problems associated with the chemical analysis of metallic elements in tissues 523
10.3.3 Corrosion in sweat 524
10.3.4 Influence of proteins on the corrosion resistance 526
10.3.5 Antibiotic-metal interactions 526
10.4 Aspects Related to the Oxide and Other Surface Layers 528
10.4.1 Effect of anodizing and passivation treatments on the corrosion resistance of titanium 528
10.4.2 Effect of coatings and surface treatments on the corrosion resistance of stainless steel and titanium 530
10.4.3 Effect of hydroxyapatite coatings on the corrosion resistance of titanium and stainless steels 535
10.4.4 Interaction between metal ions and calcium phosphates 535
10.4.5 Physico-chemical properties of metal oxides 538
10.4.6 Passive films on metallic implants 538
10.4.7 Contact angles of oxide-covered surfaces 544
Reference 547
Chapter 11Carbons 551
11.1 Introduction 551
11.1.1 Background 551
11.1.2 Diamond 554
11.1.3 Graphites 554
11.1.4 Pyrolytic carbons 555
11.1.5 Glassy carbons 556
11.1.6 Carbon fibers 556
11.1.7 Vapor phase coatings 557
11.1.8 Composites 558
11.2 Historical Overview -In Vivo Applications 558
11.2.1 Dental 558
11.2.2 Vascular 560
11.2.3 Orthopedics 560
11.2.4 Other 561
11.3 New Directions/Future Trends 561
References 562
Part III 563
Chapter 1General Concepts of Biocompatibility 564
1.1 Introduction 564
1.2 The Definition of Biocompatibility 565
1.3 Components of Biocompatibility 567
1.4 Conclusions 570
Additional Reading 571
References 571
Chapter 2Soft Tissue Response 572
2.1 Introduction 572
2.2 Types of Response 572
2.3 Inflammation 574
2.4 Wound Healing and Fibrosis 576
2.5 Repair of Implant Sites 577
2.6 Summary 578
Additional Reading 578
References 580
Chapter 3Hard Tissue Response 581
3.1 Introduction 581
3.2 Fixation by Cementation 581
3.3 Fixation by Ingrowth (Cement-Free Implants in Bone) 584
3.4 Osseointegration 585
3.5 How Bone-Biomaterial Interfaces Fail 588
3.6 Conclusions 588
Additional Reading 590
References 590
Chapter 4Immune Response 593
4.1 Introduction 593
4.2 Overview of the Specific Immune Response 593
4.3 Detection of Antibody 595
4.4 Detection of Cell Mediated Responses (Type IV) 597
4.5 Detection of Immune Responses to Haptens 600
4.6 Human Immune Response to Materials 600
4.6.1 Latex 600
4.6.2 Collagen 601
4.6.3 Synthetic polymers 601
4.7 Consequences of an Immune Response 602
4.8 Conclusions 603
Additional Reading 604
Chapter 5Cancer 607
5.1 Introduction 607
5.2 Release and Distribution of Degradation Products 608
5.3 Neoplasia 609
5.4 Evidence for Carcinogenicity of Implanted Materials 610
5.5 Case Reports of Implant Related Tumors 611
5.6 Critical Analysis of Tumors 613
5.7 Significance of Clinical Reports 615
5.8 Summary 616
Additional Reading 617
References 618
Chapter 6Blood–material Interactions 621
6.1 Introduction 621
6.2 Experimental Difficulties 621
6.3 Conventional Polymers 623
6.4 Hydrophilic Polymers 624
6.5 Metals 625
6.6 Carbons 625
6.7 Ultra-thin Film Coatings 626
6.8 Membranes 626
6.9 Biological Surfaces 626
6.10 Surface Texture 627
6.11 Conclusion 628
Additional Reading 628
References 629
Chapter 7Soft Tissue Response to Silicones 631
7.1 Silicones used in Medicine 631
7.2 Local immunologic reactions to silicone 631
7.3 Systemic immunologic reactions to silicone 632
7.4 Evidence for causation 634
7.5 Controlled studies examining the relationship between breast implants and connective tissue disease. 637
Reference 641
Chapter 8Vocal Folds 645
8.1 Introduction 645
8.2 Composition 646
8.2.1 Collagen 647
8.2.2 Elastin 647
8.2.3 Hyaluronic Acid 647
8.2.4 Interstitial Proteins 648
8.2.5 Voice Disorders 648
8.3 Mechanical Properties 649
8.3.1 General 649
8.3.2 Rheology 650
8.3.3 Elastic Shear Modulus 650
8.3.4 Dynamic Viscosity 651
8.3.5 Poisson’s Ratio 651
8.3.6 Vocal Fold Scarring 652
8.4 Biomaterial Injections 652
8.4.1 Collagen and Fat Injections 653
8.4.2 Modified Hyaluronic Acid 654
Additional Reading 656
References 656
Index 659
Erscheint lt. Verlag | 11.6.2016 |
---|---|
Zusatzinfo | XVIII, 676 p. 46 illus., 3 illus. in color. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Pflege |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Naturwissenschaften ► Biologie | |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Schlagworte | biomedical engineering • Characterization and Evaluation of Materials • dentistry • Ophthalmology • Surgery |
ISBN-10 | 1-4939-3305-1 / 1493933051 |
ISBN-13 | 978-1-4939-3305-1 / 9781493933051 |
Haben Sie eine Frage zum Produkt? |
Größe: 16,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich