Evolutionary Computation in Gene Regulatory Network Research (eBook)

eBook Download: EPUB
2016
Wiley (Verlag)
978-1-119-07978-1 (ISBN)

Lese- und Medienproben

Evolutionary Computation in Gene Regulatory Network Research -
Systemvoraussetzungen
123,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Introducing a handbook for gene regulatory network research using evolutionary computation, with applications for computer scientists, computational and system biologists This book is a step-by-step guideline for research in gene regulatory networks (GRN) using evolutionary computation (EC). The book is organized into four parts that deliver materials in a way equally attractive for a reader with training in computation or biology. Each of these sections, authored by well-known researchers and experienced practitioners, provides the relevant materials for the interested readers. The first part of this book contains an introductory background to the field. The second part presents the EC approaches for analysis and reconstruction of GRN from gene expression data. The third part of this book covers the contemporary advancements in the automatic construction of gene regulatory and reaction networks and gives direction and guidelines for future research. Finally, the last part of this book focuses on applications of GRNs with EC in other fields, such as design, engineering and robotics. Provides a reference for current and future research in gene regulatory networks (GRN) using evolutionary computation (EC) Covers sub-domains of GRN research using EC, such as expression profile analysis, reverse engineering, GRN evolution, applications Contains useful contents for courses in gene regulatory networks, systems biology, computational biology, and synthetic biology Delivers state-of-the-art research in genetic algorithms, genetic programming, and swarm intelligence Evolutionary Computation in Gene Regulatory Network Research is a reference for researchers and professionals in computer science, systems biology, and bioinformatics, as well as upper undergraduate, graduate, and postgraduate students. Hitoshi Iba is a Professor in the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, at the University of Tokyo, Toyko, Japan. He is an Associate Editor of the IEEE Transactions on Evolutionary Computation and the journal of Genetic Programming and Evolvable Machines. Nasimul Noman is a lecturer in the School of Electrical Engineering and Computer Science at the University of Newcastle, NSW, Australia. From 2002 to 2012 he was a faculty member at the University of Dhaka, Bangladesh. Noman is an Editor of the BioMed Research International journal. His research interests include computational biology, synthetic biology, and bioinformatics.

Hitoshi Iba is a Professor in the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, at the University of Tokyo, Tokyo, Japan. He is an Associate Editor of the IEEE Transactions on Evolutionary Computation and the Journal of Genetic Programming and Evolvable Machines. Nasimul Noman is a Lecturer in the School of Electrical Engineering and Computer Science at the University of Newcastle, NSW, Australia. From 2002 to 2012, he was a faculty member at the University of Dhaka, Bangladesh. Noman is an Editor of the BioMed Research International journal. His research interests include computational biology, synthetic biology, and bioinformatics.

Preface ix

Acknowledgments xiii

Contributors xv

I Preliminaries

1 A Brief Introduction to Evolutionary and other Nature-Inspired Algorithms 3
Nasimul Noman and Hitoshi Iba

2 Mathematical Models and Computational Methods for Inference of Genetic Networks 30
Tatsuya Akutsu

3 Gene Regulatory Networks: Real Data Sources and Their Analysis 49
Yuji Zhang

II EAs for Gene Expression Data Analysis and GRN Reconstruction

4 Biclustering Analysis of Gene Expression Data Using Evolutionary Algorithms 69
Alan Wee-Chung Liew

5 Inference of Vohradsky's Models of Genetic Networks Using a Real-Coded Genetic Algorithm 96
Shuhei Kimura

6 GPU-Powered Evolutionary Design of Mass-Action-Based Models of Gene Regulation 118
Marco S. Nobile, Davide Cipolla, Paolo Cazzaniga and Daniela Besozzi

7 Modeling Dynamic Gene Expression in Streptomyces Coelicolor: Comparing Single and Multi-Objective Setups 151
Spencer Angus Thomas, Yaochu Jin, Emma Laing and Colin Smith

8 Reconstruction of Large-Scale Gene Regulatory Network Using S-system Model 185
Ahsan Raja Chowdhury and Madhu Chetty

III EAs for Evolving GRNs and Reaction Networks

9 Design Automation of Nucleic Acid Reaction System Simulated by Chemical Kinetics Based on Graph Rewriting Model 213
Ibuki Kawamata and Masami Hagiya

10 Using Evolutionary Algorithms to Study the Evolution of Gene Regulatory Networks Controlling Biological Development 240
Alexander Spirov and David Holloway

11 Evolving GRN-inspired In Vitro Oscillatory Systems 269
Quang Huy Dinh, Nathanael Aubert, Nasimul Noman, Hitoshi Iba and Yannic Rondelez

IV Application of GRN with EAs

12 Artificial Gene Regulatory Networks for Agent Control 301
Sylvain Cussat-Blanc, Jean Disset, Stéphane Sanchez and Yves Duthen

13 Evolving H-GRNs for Morphogenetic Adaptive Pattern Formation of Swarm Robots 327
Hyondong Oh and Yaochu Jin

14 Regulatory Representations in Architectural Design 362
Daniel Richards and Martyn Amos

15 Computing with Artificial Gene Regulatory Networks 398
Michael A. Lones

Index 425

Erscheint lt. Verlag 21.1.2016
Reihe/Serie Wiley Series in Bioinformatics
Wiley Series in Bioinformatics
Wiley Series in Bioinformatics
Mitarbeit Herausgeber (Serie): Yi Pan, Albert Y. Zomaya
Sprache englisch
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Weitere Themen Bioinformatik
Medizin / Pharmazie
Schlagworte Algorithmen u. Datenstrukturen • Algorithms & Data Structures • Bioinformatics & Computational Biology • Bioinformatik u. Computersimulationen in der Biowissenschaften • Biowissenschaften • Computer Science • Data Mining & Knowledge Discovery • Data Mining u. Knowledge Discovery • deterministic and stochastic modelling • Evolutionary Algorithms (EAs) • evolutionary computation • gene network research • Gene regulatory networks (GRNs) • genetic algorhtims • genetic programming • Informatik • Life Sciences • single and multi-objective genetic algorithms • Swarm intelligence
ISBN-10 1-119-07978-0 / 1119079780
ISBN-13 978-1-119-07978-1 / 9781119079781
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Build memory-efficient cross-platform applications using .NET Core

von Trevoir Williams

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Learn asynchronous programming by building working examples of …

von Carl Fredrik Samson

eBook Download (2024)
Packt Publishing Limited (Verlag)
29,99