• An in-depth resource to the amply stocked tool-box of today's fracture surgeon
• A compendium of fracture fixation written by an experienced surgeon for fellows, residents and masters
• A detailed overview of biomechanics, biology, implants and materials relevant to fracture care
• Elegantly illustrated and lucidly explained presentations of today's fracture fixation devices
• The designs, the application techniques in various anatomical regions, mechanical effects, hazards and contraindications are described along elucidative graphics
• Not so commonly found details of intramedullary nail and use of Poller screws in its insertion, hazards of use of traction table, methods to perfect insertion of intramedullary hip fixation device, minute details of cables, pins and wires, several configurations of external fixator, new concept of reverse dynamization, a brief exposure of spinal instrumentation and several techniques of minimal invasive osteosynthesis are a few of its features
Timely, accurate, and up-to-date text clearly explaining the fundamentals of fracture healing and bone fixation in a format that is concise, well organized and easy to follow. It is extremely well illustrated and addresses the biomechanical principles and usage techniques of the wide range of modern orthopaedic trauma implants in use today.* An in-depth resource to the amply stocked tool-box of today's fracture surgeon* A compendium of fracture fixation written by an experienced surgeon for fellows, residents and masters* A detailed overview of biomechanics, biology, implants and materials relevant to fracture care* Elegantly illustrated and lucidly explained presentations of today's fracture fixation devices* The designs, the application techniques in various anatomical regions, mechanical effects, hazards and contraindications are described along elucidative graphics* Not so commonly found details of intramedullary nail and use of Poller screws in its insertion, hazards of use of traction table, methods to perfect insertion of intramedullary hip fixation device, minute details of cables, pins and wires, several configurations of external fixator, new concept of reverse dynamization, a brief exposure of spinal instrumentation and several techniques of minimal invasive osteosynthesis are a few of its features
Bone and materials in fracture fixation
Biomechanical Properties of Bone
Tensile Strength and Elasticity
Four Steps of Fracture Healing
Callus Formation and Internal Fixation
Osteonal and Non Osteonal Healing
Conventional Plate and Bone Vascularity
Adverse Clinical Conditions Delaying Bone Healing
Orthobiologics and Tissue Engineering
Natural Bone-Based Bone Graft Substitute
Growth Factor-Based Bone Graft Substitutes
Platelet-Rich Plasma (PRP) or Autologous Platelet Concentrate
Cell-Based Bone Graft Substitutes
Ceramic-Based Bone Graft Substitutes
Calcium Hydroxyapatite and Tricalcium Phosphate (TCP)
Bioactive Glass Ceramices (Bioglass)
Polymer-Based Bone Graft Substitutes
Coral-Based Bone Graft Substitutes
Other Modalities to Enhance Bone Healing
Materials in Fracture Fixation
Comparison of Stainless Steel and Titanium for Fracture Fixation
Metal Working Methods and Their Effects on Implants
Immobilization does not favour the formation of callus, movement does.
– Just Lucas-Championnière, 1910.
Bone as material
Biomechanical properties of bone
Bone is categorized as long bone and flat bone. On macroscopic level, cortical and cancellous types exist, which are described as lamellar and woven bone at microscopic level. Cortical bone exists in 80% of the skeleton. It is made of Haversian systems, which have osteons and Haversian canals; canals contain arterioles, venules, capillaries and nerves. The region between osteons is filled with interstitial lamellae. Cortical bone has slow turnover rate and high Young’s modulus. Cancellous bone is organized as a loose network of bony struts measuring approximately 200 µm. It is porous and contains bone marrow. Newly formed bone is known as ‘woven’ bone and has random arrangement of the tissues. It contains more osteocytes per unit of volume and higher turnover rate compared to lamellar bone. It is also more flexible and weaker than lamellar bone. When it is organized and oriented along the lines of stress, remodelled woven bone is known as lamellar bone. It is stronger and stiffer than the woven bone.
Bone is a composite of type I collagen, ground substance (organic matrix) and calcium and phosphate (inorganic mineral salts). The organic components make the bone hard and rigid whereas the inorganic components give bone its tensile strength and elasticity. Bone is viscoelastic i.e. when loaded at higher rates it is stiffer, stronger and stores more energy. Gross appearance of bone is cortical (compact) and cancellous (porous); both have similar constitution but varying degree of porosity and density. The apparent density of bone is calculated as the mass of bone tissue divided by the volume of the specimen; apparent density of cortical bone is 1.8 g/cm3 while range of apparent density of cancellous bone is from 0.1 g/cm3 to 1.0 g/cm3. After the fifth decade progressive net loss of bone mass occurs, but in women it proceeds at a faster rate. This loss leads to diminished bone strength, a reduced modulus of elasticity and increased possibility of fractures. Nature’s compensatory mechanism initiates remodelling of bone. Bone is absorbed from endosteal location and deposited in subperiosteal zone. This activity leads to an increase in bone diameter and subsequent higher moment of inertia. Thus, thinning of bone is compensated by increased diameter; the transition is smaller in women and predisposes them to an increased rate of fracture.
Tensile strength and elasticity
Bone is formed in two ways. Endochondral bone formation occurs in non-rigid fracture healing (secondary bone healing), longitudinal physeal growth and embryonic long bone formation. Chondrocytes produce cartilage, which is absorbed by osteoclasts. Osteoblasts lay down bone on cartilaginous framework; bone replaces cartilage; cartilage is not converted to bone. Chondrocytes play a significant role in endochondral bone formation throughout the formation of the cartilage intermediate. Intramembranous bone formation is the second method of bone formation, generally known as primary bone healing, contact healing and Haversian remodelling. Fetal bone formation (embryonic flat bones like skull, maxilla, mandible, pelvis, clavicle and subperiosteal surface of long bone) also takes place by intramembranous bone formation. The process is also associated with distraction osteogenesis and fracture healing with rigid fixation, and is a part of healing process in intramedullary nailing. Intramembranous bone formation commences with aggregation of undifferentiated mesenchymal cells that later differentiate into osteoblasts; simultaneously organic matrix is deposited.
Four steps of fracture healing
The entire process of diaphyseal fracture healing may be divided into four stages: inflammation, soft callus, hard callus and remodelling. Inflammation starts immediately after the fracture occurs and lasts for 7–10 days. Initial haematoma is gradually replaced by granulation tissue. Osteoclasts remove necrotic tissue from the bone ends. Soft callus is formed in 2–3 weeks after the fracture. Fragments are in a sticky state and there is sufficient stability to prevent shortening, but not angulation. Progenitor cells from the periosteum and endosteum mature to form osteoblasts. Bone growth takes place away from fracture gap and forms a cuff of woven bone at both subperiosteal and endosteal locations. Blood vessels grow into the callus. Mesenchymal cells in the fracture gap proliferate and differentiate into fibroblasts or chondrocytes producing characteristic extracellular matrix. Hard callus develops when the fracture ends are held together by soft callus. The process continues for 3–4 months. Ossification process commences at the periosteum as cartilage is converted into rigid calcified tissue by endochondral ossification. Thus, bony callus growth begins in the peripheral areas and slowly progress towards the gap. Osseous bridge is formed away from the cortex, either externally or in the medullary canal. Finally, through endochondral ossification, the soft tissue in the gap is converted. The fourth stage of remodelling commences after hard callus is well established. The osteoclasts ream out a tunnel in the dead cortical bone down that a blood vessel follows, bringing in the osteoblasts that lay down the lamellar bone. If the fractured bone ends...
Erscheint lt. Verlag | 10.11.2015 |
---|---|
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Allgemeines / Lexika |
Medizinische Fachgebiete ► Chirurgie ► Unfallchirurgie / Orthopädie | |
ISBN-10 | 81-312-4237-4 / 8131242374 |
ISBN-13 | 978-81-312-4237-7 / 9788131242377 |
Haben Sie eine Frage zum Produkt? |
Größe: 35,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich