Pseudo-Differential Operators and Symmetries
Springer Basel (Verlag)
978-3-7643-8513-2 (ISBN)
This monograph is devoted to the development of the theory of pseudo-di?erential n operators on spaces with symmetries. Such spaces are the Euclidean space R ,the n torus T , compact Lie groups and compact homogeneous spaces. The book consists of several parts. One of our aims has been not only to present new results on pseudo-di?erential operators but also to show parallels between di?erent approaches to pseudo-di?erential operators on di?erent spaces. Moreover, we tried to present the material in a self-contained way to make it accessible for readers approaching the material for the ?rst time. However, di?erent spaces on which we develop the theory of pseudo-di?er- tial operators require di?erent backgrounds. Thus, while operators on the - clidean space in Chapter 2 rely on the well-known Euclidean Fourier analysis, pseudo-di?erentialoperatorsonthetorusandmoregeneralLiegroupsinChapters 4 and 10 require certain backgrounds in discrete analysis and in the representation theory of compact Lie groups, which we therefore present in Chapter 3 and in Part III,respectively. Moreover,anyonewhowishestoworkwithpseudo-di?erential- erators on Lie groups will certainly bene?t from a good grasp of certain aspects of representation theory. That is why we present the main elements of this theory in Part III, thus eliminating the necessity for the reader to consult other sources for most of the time. Similarly, the backgrounds for the theory of pseudo-di?erential 3 operators on S and SU(2) developed in Chapter 12 can be found in Chapter 11 presented in a self-contained way suitable for immediate use.
Foundations of Analysis.- Sets, Topology and Metrics.- Elementary Functional Analysis.- Measure Theory and Integration.- Algebras.- Commutative Symmetries.- Fourier Analysis on ?n.- Pseudo-differential Operators on ?n.- Periodic and Discrete Analysis.- Pseudo-differential Operators on .- Commutator Characterisation of Pseudo-differential Operators.- Representation Theory of Compact Groups.- Groups.- Topological Groups.- Linear Lie Groups.- Hopf Algebras.- Non-commutative Symmetries.- Pseudo-differential Operators on Compact Lie Groups.- Fourier Analysis on SU(2).- Pseudo-differential Operators on SU(2).- Pseudo-differential Operators on Homogeneous Spaces.
From the reviews:
"This book presents recent results on the global theory of pseudo-differential operators on compact Lie groups along with a bulk of background material. ... this very welcomed book is a profitable read for specialists and-due to the included background material, which makes it self-contained-also for graduate students." (R. Steinbauer, Monatshefte für Mathematik, 2013)
"The present book is devoted to the theory of pseudodifferential operators on spaces with symmetries ... . Summing up, this welcome book is nicely written and looks very appealing for researchers in the fields of Euclidean and abstract harmonic analysis and pseudodifferential operators, as well as for any Ph.D. student interested in those topics." (Fabio Nicola, Mathematical Reviews, Issue 2011 b)
"The book is devoted to a global theory of pseudo-differential operators on compact Lie groups. ... In the whole, including background material and new results about operators on Lie groups, the book offers a pleasant and profitable reading to graduate students and specialists." (Luigi Rodino, Zentralblatt MATH, Vol. 1193, 2010)
Erscheint lt. Verlag | 19.10.2009 |
---|---|
Reihe/Serie | Pseudo-Differential Operators |
Zusatzinfo | XIV, 710 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 1380 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Schlagworte | Algebra • homogeneous space • Lie group • manifold • Partial differential equations • pseudo-differential operator • Quantization • torus |
ISBN-10 | 3-7643-8513-8 / 3764385138 |
ISBN-13 | 978-3-7643-8513-2 / 9783764385132 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich