Groups of Prime Power Order / Groups of Prime Power Order. Volume 1
Seiten
2008
De Gruyter (Verlag)
978-3-11-020418-6 (ISBN)
De Gruyter (Verlag)
978-3-11-020418-6 (ISBN)
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p—1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index. The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
Yakov Berkovich , University of Haifa, Israel.
Erscheint lt. Verlag | 17.11.2008 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics ; 46 | Groups of Prime Power Order ; Volume 1 |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 998 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Schlagworte | group theory • Group Theory; Order; Primes • Gruppentheorie • Hardcover, Softcover / Mathematik/Arithmetik, Algebra • HC/Mathematik/Arithmetik, Algebra • Order • Primes • Primzahl • Zyklische Ordnung |
ISBN-10 | 3-11-020418-5 / 3110204185 |
ISBN-13 | 978-3-11-020418-6 / 9783110204186 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich