Data Mining with Microsoft SQL Server 2008 - Jamie MacLennan, ZhaoHui Tang, Bogdan Crivat

Data Mining with Microsoft SQL Server 2008

Buch | Softcover
672 Seiten
2008
John Wiley & Sons Inc (Verlag)
978-0-470-27774-4 (ISBN)
45,80 inkl. MwSt
Understand how to use the new features of Microsoft SQL Server 2008 for data mining by using the tools in Data Mining with Microsoft SQL Server 2008 , which will show you how to use the SQL Server Data Mining Toolset with Office 2007 to mine and analyze data.
Understand how to use the new features of Microsoft SQL Server 2008 for data mining by using the tools in Data Mining with Microsoft SQL Server 2008, which will show you how to use the SQL Server Data Mining Toolset with Office 2007 to mine and analyze data. Explore each of the major data mining algorithms, including naive bayes, decision trees, time series, clustering, association rules, and neural networks. Learn more about topics like mining OLAP databases, data mining with SQL Server Integration Services 2008, and using Microsoft data mining to solve business analysis problems.

Jamie MacLennan is principal development manager of the SQL Server Analysis Services at Microsoft. He has more than 25 patents or patents pending for his work on SQL Server Data Mining, and has written extensively on the data mining technology in SQL Server. ZhaoHui Tang is a principal group program manager at Microsoft adCenter and inventor of Keyword Services Platform. Bogdan Crivat is a senior software design engineer in SQL Server Analysis Services at Microsoft, working primarily on the data mining platform.

1. Introduction to Data Mining. 2. Applied Data Mining Using Microsoft Excel 2007.

3. DMX and SQL Server Data Mining Concepts.

4. Using SQL Server Data Mining.

5. Implementing a Data Mining Process Using Office 2007.

6. Microsoft Naïve Bayes.

7. Microsoft Decision Trees Algorithm.

8. Microsoft Time Series Algorithm.

9. Microsoft Clustering.

10. Microsoft Sequence Clustering.

11. Microsoft Association Rules.

12. Microsoft Neural Network and Logistic Regression.

13. Mining OLAP Cubes.

14. Data Mining with SQL Server Integration Services.

15. SQL Server Data Mining Architecture.

16. Programming SQL Server Data Mining.

17. Extending SQL Server Data Mining.

18. Implementing a Web Cross-Selling Application.

19. Conclusion and Additional Resources.

Appendix A. Datasets.

Appendix B. Supported Functions.

Index.

Erscheint lt. Verlag 7.11.2008
Verlagsort New York
Sprache englisch
Maße 188 x 229 mm
Gewicht 1021 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Software Entwicklung
ISBN-10 0-470-27774-2 / 0470277742
ISBN-13 978-0-470-27774-4 / 9780470277744
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90