Gradient Flows
In Metric Spaces and in the Space of Probability Measures
Seiten
2008
|
2nd ed. 2008
Springer Basel (Verlag)
978-3-7643-8721-1 (ISBN)
Springer Basel (Verlag)
978-3-7643-8721-1 (ISBN)
This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. The book originates from lectures by L. Ambrosio at the ETH Zürich in Fall 2001 and contains new results.
lt;p>The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
lt;p>The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Notation.- Notation.- Gradient Flow in Metric Spaces.- Curves and Gradients in Metric Spaces.- Existence of Curves of Maximal Slope and their Variational Approximation.- Proofs of the Convergence Theorems.- Uniqueness, Generation of Contraction Semigroups, Error Estimates.- Gradient Flow in the Space of Probability Measures.- Preliminary Results on Measure Theory.- The Optimal Transportation Problem.- The Wasserstein Distance and its Behaviour along Geodesics.- Absolutely Continuous Curves in p(X) and the Continuity Equation.- Convex Functionals in p(X).- Metric Slope and Subdifferential Calculus in (X).- Gradient Flows and Curves of Maximal Slope in p(X).
Erscheint lt. Verlag | 13.3.2008 |
---|---|
Reihe/Serie | Lectures in Mathematics. ETH Zürich |
Zusatzinfo | IX, 334 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 168 x 240 mm |
Gewicht | 668 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | Calculus • differential equation • Gradient flows • Hardcover, Softcover / Mathematik/Analysis • HC/Mathematik/Analysis • hilbert space • Maßtheorie • Maxima • Maximum • measure • measure theory • Metric Spaces • Metrischer Raum • Probability measures • Riemannian structures |
ISBN-10 | 3-7643-8721-1 / 3764387211 |
ISBN-13 | 978-3-7643-8721-1 / 9783764387211 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €