Stable Solutions of Elliptic Partial Differential Equations
Seiten
2011
Chapman & Hall/CRC (Verlag)
978-1-4200-6654-8 (ISBN)
Chapman & Hall/CRC (Verlag)
978-1-4200-6654-8 (ISBN)
Stable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics and geometry. This book offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs).
Stable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces).
Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.
Stable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces).
Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.
Louis Dupaigne is an assistant professor at Université Picardie Jules Verne in Amiens, France.
Defining Stability. The Gelfand Problem. Extremal Solutions. Regularity Theory of Stable Solutions. Singular Stable Solutions. Liouville Theorems for Stable Solutions. A Conjecture of E De Giorgi. Further Readings. Appendices. References. Index.
Sprache | englisch |
---|---|
Maße | 178 x 254 mm |
Gewicht | 612 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 1-4200-6654-4 / 1420066544 |
ISBN-13 | 978-1-4200-6654-8 / 9781420066548 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Band 5: Hydraulik, Stromfadentheorie, Wellentheorie, Gasdynamik
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €