Learning Theory -

Learning Theory

20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007, Proceedings
Buch | Softcover
XII, 636 Seiten
2007 | 2007
Springer Berlin (Verlag)
978-3-540-72925-9 (ISBN)
106,99 inkl. MwSt
lt;p>This book constitutes the refereed proceedings of the 20th Annual Conference on Learning Theory, COLT 2007, held in San Diego, CA, USA in June 2007. It covers unsupervised, semisupervised and active learning, statistical learning theory, inductive inference, regularized learning, kernel methods, SVM, online and reinforcement learning, learning algorithms and limitations on learning, dimensionality reduction, as well as open problems.

Invited Presentations.- Property Testing: A Learning Theory Perspective.- Spectral Algorithms for Learning and Clustering.- Unsupervised, Semisupervised and Active Learning I.- Minimax Bounds for Active Learning.- Stability of k-Means Clustering.- Margin Based Active Learning.- Unsupervised, Semisupervised and Active Learning II.- Learning Large-Alphabet and Analog Circuits with Value Injection Queries.- Teaching Dimension and the Complexity of Active Learning.- Multi-view Regression Via Canonical Correlation Analysis.- Statistical Learning Theory.- Aggregation by Exponential Weighting and Sharp Oracle Inequalities.- Occam's Hammer.- Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector.- Suboptimality of Penalized Empirical Risk Minimization in Classification.- Transductive Rademacher Complexity and Its Applications.- Inductive Inference.- U-Shaped, Iterative, and Iterative-with-Counter Learning.- Mind Change Optimal Learning of Bayes Net Structure.- Learning Correction Grammars.- Mitotic Classes.- Online and Reinforcement Learning I.- Regret to the Best vs. Regret to the Average.- Strategies for Prediction Under Imperfect Monitoring.- Bounded Parameter Markov Decision Processes with Average Reward Criterion.- Online and Reinforcement Learning II.- On-Line Estimation with the Multivariate Gaussian Distribution.- Generalised Entropy and Asymptotic Complexities of Languages.- Q-Learning with Linear Function Approximation.- Regularized Learning, Kernel Methods, SVM.- How Good Is a Kernel When Used as a Similarity Measure?.- Gaps in Support Vector Optimization.- Learning Languages with Rational Kernels.- Generalized SMO-Style Decomposition Algorithms.- Learning Algorithms and Limitations on Learning.- Learning Nested Halfspaces and UphillDecision Trees.- An Efficient Re-scaled Perceptron Algorithm for Conic Systems.- A Lower Bound for Agnostically Learning Disjunctions.- Sketching Information Divergences.- Competing with Stationary Prediction Strategies.- Online and Reinforcement Learning III.- Improved Rates for the Stochastic Continuum-Armed Bandit Problem.- Learning Permutations with Exponential Weights.- Online and Reinforcement Learning IV.- Multitask Learning with Expert Advice.- Online Learning with Prior Knowledge.- Dimensionality Reduction.- Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections.- Sparse Density Estimation with ?1 Penalties.- ?1 Regularization in Infinite Dimensional Feature Spaces.- Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking.- Other Approaches.- Observational Learning in Random Networks.- The Loss Rank Principle for Model Selection.- Robust Reductions from Ranking to Classification.- Open Problems.- Rademacher Margin Complexity.- Open Problems in Efficient Semi-supervised PAC Learning.- Resource-Bounded Information Gathering for Correlation Clustering.- Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation?.- When Is There a Free Matrix Lunch?.

Erscheint lt. Verlag 1.6.2007
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo XII, 636 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 965 g
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Active learning • algorithm • Algorithm analysis and problem complexity • Algorithmic Learning • algorithms • Alphabet • classification • Complexity • Computational Learning • Decision Theory • Game Theory • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Inductive Inference • Kernel Method • Kernel Methods • Learning theory • machine learning • Online Learning • online prediction • Optimization • Reinforcement Learning • semisupervised learning • stability • Statistical Learning • Support Vector Machines • Unsupervised Learning
ISBN-10 3-540-72925-9 / 3540729259
ISBN-13 978-3-540-72925-9 / 9783540729259
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99