Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor D-Modules, Part 1
Seiten
2006
American Mathematical Society (Verlag)
978-0-8218-3942-3 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-3942-3 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Studies the asymptotic behaviour of tame harmonic bundles. This book proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. It also obtains the polarized mixed twistor structure from the data on the divisors.
The author studies the asymptotic behaviour of tame harmonic bundles. First he proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. Then he obtains the polarized mixed twistor structure from the data on the divisors. As one of the applications, he obtains the norm estimate of holomorphic or flat sections by weight filtrations of the monodromies. As another application, the author establishes the correspondence of semisimple regular holonomic $D$-modules and polarizable pure imaginary pure twistor $D$-modules through tame pure imaginary harmonic bundles, which is a conjecture of C. Sabbah. Then the regular holonomic version of M. Kashiwara's conjecture follows from the results of Sabbah and the author.
The author studies the asymptotic behaviour of tame harmonic bundles. First he proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. Then he obtains the polarized mixed twistor structure from the data on the divisors. As one of the applications, he obtains the norm estimate of holomorphic or flat sections by weight filtrations of the monodromies. As another application, the author establishes the correspondence of semisimple regular holonomic $D$-modules and polarizable pure imaginary pure twistor $D$-modules through tame pure imaginary harmonic bundles, which is a conjecture of C. Sabbah. Then the regular holonomic version of M. Kashiwara's conjecture follows from the results of Sabbah and the author.
Introduction Part 1. Preliminary: Preliminary Preliminary for mixed twistor structure Preliminary for filtrations Some lemmas for generically splitted case Model bundles Part 2. Prolongation of Deformed Holomorphic Bundles: Harmonic bundles on a punctured disc Harmonic bundles on a product of punctured discs The KMS-structure of the space of the multi-valued flat sections The induced regular $/lambda$-connection on $/Delta^n/times C^/ast$ Part 3. Limiting Mixed Twistor theorem and Some Consequence: The induced vector bundle over $/mathbb{P}^1$ Limiting mixed twistor theorem Norm estimate Bibliography Index.
Erscheint lt. Verlag | 1.1.2007 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 614 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-8218-3942-X / 082183942X |
ISBN-13 | 978-0-8218-3942-3 / 9780821839423 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Band 5: Hydraulik, Stromfadentheorie, Wellentheorie, Gasdynamik
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €