Transformation Methods For Nonlinear Partial Differential Equations
Seiten
1992
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-0933-9 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-0933-9 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
The purpose of this book is to provide research workers in applied mathematics, physics and engineering with practical methods for solving systems of nonlinear partial differential equations.
The purpose of the book is to provide research workers in applied mathematics, physics, and engineering with practical geometric methods for solving systems of nonlinear partial differential equations. The first two chapters provide an introduction to the more or less classical results of Lie dealing with symmetries and similarity solutions. The results, however, are presented in the context of contact manifolds rather than the usual jet bundle formulation and provide a number of new conclusions. The remaining three chapters present essentially new methods of solution that are based on recent publications of the authors'. The text contains numerous fully worked examples so that the reader can fully appreciate the power and scope of the new methods. In effect, the problem of solving systems of nonlinear partial differential equations is reduced to the problem of solving families of autonomous ordinary differential equations. This allows the graphs of solutions of the system of partial differential equations to be realized as certain leaves of a foliation of an appropriately defined contact manifold. In fact, it is often possible to obtain families of solutions whose graphs foliate an open subset of the contact manifold. These ideas are extended in the final chapter by developing the theory of transformations that map a foliation of a contact manifold onto a foliation. This analysis gives rise to results of surprising depth and practical significance. In particular, an extended Hamilton-Jacobi method for solving systems of partial differential equations is obtained.
The purpose of the book is to provide research workers in applied mathematics, physics, and engineering with practical geometric methods for solving systems of nonlinear partial differential equations. The first two chapters provide an introduction to the more or less classical results of Lie dealing with symmetries and similarity solutions. The results, however, are presented in the context of contact manifolds rather than the usual jet bundle formulation and provide a number of new conclusions. The remaining three chapters present essentially new methods of solution that are based on recent publications of the authors'. The text contains numerous fully worked examples so that the reader can fully appreciate the power and scope of the new methods. In effect, the problem of solving systems of nonlinear partial differential equations is reduced to the problem of solving families of autonomous ordinary differential equations. This allows the graphs of solutions of the system of partial differential equations to be realized as certain leaves of a foliation of an appropriately defined contact manifold. In fact, it is often possible to obtain families of solutions whose graphs foliate an open subset of the contact manifold. These ideas are extended in the final chapter by developing the theory of transformations that map a foliation of a contact manifold onto a foliation. This analysis gives rise to results of surprising depth and practical significance. In particular, an extended Hamilton-Jacobi method for solving systems of partial differential equations is obtained.
Contact manifolds, ideals and partial differential equations; an order independent method of characteristics; horizontal ideals, foliations, and solutions; primitive integrals, isovectors and resolutions; extended canonical transformations. Appendices: an alternative treatment of extended canonical transformations; multiple integral variational problems.
Erscheint lt. Verlag | 1.6.1992 |
---|---|
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
ISBN-10 | 981-02-0933-9 / 9810209339 |
ISBN-13 | 978-981-02-0933-9 / 9789810209339 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €