Modeling and Optimization of Signals Using Machine Learning Techniques (eBook)

eBook Download: PDF
2024
419 Seiten
Wiley-Scrivener (Verlag)
978-1-119-84770-0 (ISBN)

Lese- und Medienproben

Modeling and Optimization of Signals Using Machine Learning Techniques -
Systemvoraussetzungen
194,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Explore the power of machine learning to revolutionize signal processing and optimization with cutting-edge techniques and practical insights in this outstanding new volume from Scrivener Publishing.

Modeling and Optimization of Signals using Machine Learning Techniques is designed for researchers from academia, industries, and R&D organizations worldwide who are passionate about advancing machine learning methods, signal processing theory, data mining, artificial intelligence, and optimization. This book addresses the role of machine learning in transforming vast signal databases from sensor networks, internet services, and communication systems into actionable decision systems. It explores the development of computational solutions and novel models to handle complex real-world signals such as speech, music, biomedical data, and multimedia.

Through comprehensive coverage of cutting-edge techniques, this book equips readers with the tools to automate signal processing and analysis, ultimately enhancing the retrieval of valuable information from extensive data storage systems. By providing both theoretical insights and practical guidance, the book serves as a comprehensive resource for researchers, engineers, and practitioners aiming to harness the power of machine learning in signal processing.

Whether for the veteran engineer, scientist in the lab, student, or faculty, this groundbreaking new volume is a valuable resource for researchers and other industry professionals interested in the intersection of technology and agriculture.

Chandra Singh is an assistant professor in the Department of Electronics and Communication Engineering at Sahyadri College of Engineering and Management, Mangalore, India, and is pursuing a PhD from VTU Belagavi, India. He has four patents, he has published over 25 papers in scientific journals, and he is the editor of seven books.

Rathishchandra R. Gatti, PhD, is an associate professor at Jawaharlal Nehru University, Delhi, India. With over 20 years of industrial, research, and teaching experience under his belt, he also has four patents, has published over 40 papers in scientific journals, and is the editor of seven research books and one journal.

K.V.S.S.S.S.SAIRAM, PhD, is a professor and Head of the Electronics and Communication Engineering Department at the NMAM Institute of Technology, Nitte, India. He has 25 years of experience in teaching and research and has published over 50 papers in international journals and conferences. He is also a reviewer for several journals.

Manjunatha Badiger, PhD, is an assistant professor at Sahyadri College of Engineering and Management, Adyar, Mangalore, Karnataka, India. He has over 12 years of experience in academics, research, and administration. He earned his PhD in machine learning in 2024 at Visvesvaraya Technological University.

Naveen Kumar S., MTech, is an assistant professor at the Sahyadri College of Engineering and Management. Previously he was an assistant professor at JSS Academy of Technical Education, Noida, India. He obtained his MTech in automotive electronics from Sri Jayachamarajendra College of Engineering, Mysore, India.

Varun Saxena, PhD, received his PhD in electromagnetic ion traps from IIT Delhi, New Delhi, in 2018. He is currently an assistant professor at the School of Engineering, Jawaharlal Nehru University, New Delhi.

Erscheint lt. Verlag 23.8.2024
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Schlagworte Adaptive signal processing • Clustering • dimensionality reduction • machine learning • Neural networks • Optimization • Principal Component Analysis • Regression • Reinforcement Learning • signal classification • signal modeling • Signal Processing • supervised learning • telecommunications • Unsupervised Learning
ISBN-10 1-119-84770-2 / 1119847702
ISBN-13 978-1-119-84770-0 / 9781119847700
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 166,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Der Weg zur professionellen Vektorgrafik

von Uwe Schöler

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
29,99