Für diesen Artikel ist leider kein Bild verfügbar.

Generative AI Foundations in Python

Discover key techniques and navigate modern challenges in LLMs
Buch | Softcover
190 Seiten
2024
Packt Publishing Limited (Verlag)
978-1-83546-082-5 (ISBN)
37,40 inkl. MwSt
Begin your generative AI journey with Python as you explore large language models, understand responsible generative AI practices, and apply your knowledge to real-world applications through guided tutorials

Key Features

Gain expertise in prompt engineering, LLM fine-tuning, and domain adaptation
Use transformers-based LLMs and diffusion models to implement AI applications
Discover strategies to optimize model performance, address ethical considerations, and build trust in AI systems
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionThe intricacies and breadth of generative AI (GenAI) and large language models can sometimes eclipse their practical application. It is pivotal to understand the foundational concepts needed to implement generative AI. This guide explains the core concepts behind -of-the-art generative models by combining theory and hands-on application.
Generative AI Foundations in Python begins by laying a foundational understanding, presenting the fundamentals of generative LLMs and their historical evolution, while also setting the stage for deeper exploration. You’ll also understand how to apply generative LLMs in real-world applications. The book cuts through the complexity and offers actionable guidance on deploying and fine-tuning pre-trained language models with Python. Later, you’ll delve into topics such as task-specific fine-tuning, domain adaptation, prompt engineering, quantitative evaluation, and responsible AI, focusing on how to effectively and responsibly use generative LLMs.
By the end of this book, you’ll be well-versed in applying generative AI capabilities to real-world problems, confidently navigating its enormous potential ethically and responsibly.What you will learn

Discover the fundamentals of GenAI and its foundations in NLP
Dissect foundational generative architectures including GANs, transformers, and diffusion models
Find out how to fine-tune LLMs for specific NLP tasks
Understand transfer learning and fine-tuning to facilitate domain adaptation, including fields such as finance
Explore prompt engineering, including in-context learning, templatization, and rationalization through chain-of-thought and RAG
Implement responsible practices with generative LLMs to minimize bias, toxicity, and other harmful outputs

Who this book is forThis book is for developers, data scientists, and machine learning engineers embarking on projects driven by generative AI. A general understanding of machine learning and deep learning, as well as some proficiency with Python, is expected.

Carlos Rodriguez is the Director of AI risk at a major financial institution, where he oversees the validation of cutting-edge AI and machine learning models, including generative AI, to ensure that they remain trustworthy, unbiased, and compliant with stringent regulatory standards. With a degree in data science, numerous professional certifications, and two decades of experience in emerging technology, Carlos is a recognized expert in natural language processing and machine learning. Throughout his career, he has fostered and led high-performing machine learning engineering and data science teams specializing in natural language processing and AI risk, respectively. Known for his human-centered approach to AI, Carlos is a passionate autodidact who continuously expands his knowledge as a data scientist, machine learning practitioner, and risk executive. His current focus lies in developing a comprehensive framework for evaluating generative AI models within a regulatory setting, aiming to set new industry standards for responsible AI adoption and deployment.

Table of Contents

Understanding Generative AI: An Introduction
Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers
Tracing the Foundations of Natural Language Processing and the Impact of the Transformer
Applying Pretrained Generative Models: From Prototype to Production
Fine-Tuning Generative Models for Specific Tasks
Understanding Domain Adaptation for Large Language Models
Mastering the Fundamentals of Prompt Engineering
Addressing Ethical Considerations and Charting a Path Toward Trustworthy Generative AI

Erscheinungsdatum
Vorwort Samira Shaikh
Verlagsort Birmingham
Sprache englisch
Maße 191 x 235 mm
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-83546-082-8 / 1835460828
ISBN-13 978-1-83546-082-5 / 9781835460825
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00