Geometry by Its Transformations - Christopher Baltus

Geometry by Its Transformations

Lessons Centered on the History from 1800-1855
Buch | Softcover
X, 185 Seiten
2025
Springer International Publishing (Verlag)
978-3-031-72280-6 (ISBN)
48,14 inkl. MwSt

This textbook combines the history of synthetic geometry, centered on the years 1800-1855, with a theorem-proof exposition of the geometry developed in those years. The book starts with the background needed from Euclid's Elements, followed by chapters on transformations, including dilation (similitude), homology, homogeneous coordinates, projective geometry, inversion, the Möbius transformation, and transformation geometry as in French schoolbooks of 1910. Projective geometry is presented by tracing its path through the work of J. V. Poncelet, J. Steiner, and K. G. C. von Staudt. Extensive exercises are included, many from the period studied. The prerequisites for approaching this course are knowledge of high school geometry and enthusiasm for mathematical demonstration.

This textbook is ideal for a college geometry course, for self-study, or as preparation for the study of modern geometry. 

Christopher Baltus has degrees in history (BA), mathematics education (MAT), and mathematics (PhD). After three years of secondary mathematics teaching and two years in the Peace Corps, he taught college mathematics for 36 years. His article "Poncelet's discovery of homology" appeared in Historia Mathematica, May 2023. In retirement, in Poughkeepsie, NY, he and his wife volunteer in an elementary school, he as an in-the-classroom mathematics aide.

Introduction.- 1. Greek Background.- 2. The Dilation Transformation.- 3. Institutional Transformation of Geometry: France.- 4. Affinity and the List of Transformations by Moebius.- 5. Background for Homology: the Common Secant, the Cross-Ratio, and Harmonic Sets.- 6. Plane-to-Plane Projection.- 7. Homology as developed by La Hire and Poncelet.- 8. Matrices and Homogeneous Coordinates.- 9. Projective Geometry: Steiner and von Staudt.- 10. Transformation in German Universities.- 11. Geometric Inversion.- 12. Moebius Transformation.- 13. Topic after 1855: Beltrami-Klein Model.- 14. Topic after 1855: Isometries and Dilations in French Schoolbooks.

Erscheint lt. Verlag 16.1.2025
Reihe/Serie Compact Textbooks in Mathematics
Zusatzinfo V, 195 p. 93 illus., 2 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Geschichte der Mathematik
Schlagworte Euclidean Geometry • history of geometry • Projective Geometry • Synthetic geometry • transformations
ISBN-10 3-031-72280-9 / 3031722809
ISBN-13 978-3-031-72280-6 / 9783031722806
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich