Python 3 for Machine Learning -  Oswald Campesato,  Mercury Learning and Information

Python 3 for Machine Learning (eBook)

Harness the Power of Python for Advanced Machine Learning Projects
eBook Download: EPUB
2024 | 1. Auflage
362 Seiten
Packt Publishing (Verlag)
978-1-83664-994-6 (ISBN)
Systemvoraussetzungen
29,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book introduces basic Python 3 programming concepts related to machine learning. The first four chapters provide a fast-paced introduction to Python 3, NumPy, and Pandas. The fifth chapter covers fundamental machine learning concepts. The sixth chapter dives into machine learning classifiers, such as logistic regression, k-NN, decision trees, random forests, and SVMs. The final chapter includes material on natural language processing (NLP) and reinforcement learning (RL). Keras-based code samples supplement the theoretical discussion.
The course begins with Python basics, including conditional logic, loops, functions, and collections. It then explores data manipulation with NumPy and Pandas. The journey continues with an introduction to machine learning, focusing on essential concepts and classifiers. Advanced topics like NLP and RL are covered, ensuring a comprehensive understanding of machine learning.
These concepts are crucial for developing machine learning applications. This book transitions readers from basic Python programming to advanced machine learning techniques, blending theory with practical skills. Appendices for regular expressions, Keras, and TensorFlow 2, along with companion files, enhance learning, making this an essential resource for mastering Python and machine learning.


Comprehensive guide to mastering Python and machine learning, with hands-on examples and practical projects.Key FeaturesComprehensive Python 3 coverageDetailed machine learning algorithmsHands-on examples and projectsBook DescriptionThis book introduces basic Python 3 programming concepts related to machine learning. The first four chapters provide a fast-paced introduction to Python 3, NumPy, and Pandas. The fifth chapter covers fundamental machine learning concepts. The sixth chapter dives into machine learning classifiers, such as logistic regression, k-NN, decision trees, random forests, and SVMs. The final chapter includes material on natural language processing (NLP) and reinforcement learning (RL). Keras-based code samples supplement the theoretical discussion. The course begins with Python basics, including conditional logic, loops, functions, and collections. It then explores data manipulation with NumPy and Pandas. The journey continues with an introduction to machine learning, focusing on essential concepts and classifiers. Advanced topics like NLP and RL are covered, ensuring a comprehensive understanding of machine learning. These concepts are crucial for developing machine learning applications. This book transitions readers from basic Python programming to advanced machine learning techniques, blending theory with practical skills. Appendices for regular expressions, Keras, and TensorFlow 2, along with companion files, enhance learning, making this an essential resource for mastering Python and machine learning.What you will learnMaster Python basics and advanced techniquesImplement efficient loops and functionsUse Python collections for data handlingManipulate data with NumPy and PandasBuild and evaluate machine learning modelsApply NLP and reinforcement learning techniquesWho this book is forIdeal for aspiring data scientists, machine learning enthusiasts, and Python programmers. No prior knowledge of Python or machine learning is required, making it suitable for beginners. Basic programming understanding is helpful.]]>
Erscheint lt. Verlag 12.8.2024
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-83664-994-0 / 1836649940
ISBN-13 978-1-83664-994-6 / 9781836649946
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99