Extreme Value Theory for Time Series (eBook)

Models with Power-Law Tails
eBook Download: PDF
2024 | 2024
XVI, 766 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-59156-3 (ISBN)

Lese- und Medienproben

Extreme Value Theory for Time Series - Thomas Mikosch, Olivier Wintenberger
Systemvoraussetzungen
235,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book deals with extreme value theory for univariate and multivariate time series models characterized by power-law tails. These include the classical ARMA models with heavy-tailed noise and financial econometrics models such as the GARCH and stochastic volatility models.

Rigorous descriptions of power-law tails are provided through the concept of regular variation. Several chapters are devoted to the exploration of regularly varying structures.

The remaining chapters focus on the impact of heavy tails on time series, including the study of extremal cluster phenomena through point process techniques.

A major part of the book investigates how extremal dependence alters the limit structure of sample means, maxima, order statistics, sample autocorrelations. 

This text illuminates the theory through hundreds of examples and as many graphs showcasing its applications to real-life financial and simulated data.

The book can serve as a text for PhD and Master courses on applied probability, extreme value theory, and time series analysis.

It is a unique reference source for the heavy-tail modeler. Its reference quality is enhanced by an exhaustive bibliography, annotated by notes and comments making the book broadly and easily accessible.

 

 

Erscheint lt. Verlag 2.8.2024
Reihe/Serie Springer Series in Operations Research and Financial Engineering
Zusatzinfo XVI, 766 p. 83 illus., 81 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte big jump principle • Cluster Phenomena • heavy-tail phenomena • Modeling extremal events • Time Series
ISBN-10 3-031-59156-9 / 3031591569
ISBN-13 978-3-031-59156-3 / 9783031591563
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 28,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich