Einführung in die Numerische Mathematik - Thomas Richter, Henry von Wahl, Thomas Wick

Einführung in die Numerische Mathematik

Begriffe, Konzepte und zahlreiche Anwendungsbeispiele
Buch | Softcover
XIII, 557 Seiten
2024 | 2., neu bearbeitete und aktualisierte Auflage
Springer Berlin (Verlag)
978-3-662-69581-4 (ISBN)
39,99 inkl. MwSt

Dieses Lehrbuch behandelt zeitgemäß, anwendungsorientiert und ausführlich die theoretischen Grundlagen der Numerik. Dabei sind - zusätzlich zu den gängigen Inhalten - zahlreiche angewandte Beispiele und Praxis-Exkurse eingebunden, um das Verständnis nachhaltig zu fördern. Beweise werden sehr kleinteilig in vielen detailliert beschriebenen Schritten dargestellt. Auf die sich wiederholenden, zentralen Kernkonzepte der Numerik (z.B. Stabilität, Effizienz, Robustheit, Genauigkeit,...) wird explizit eingegangen, und diese Begriffe werden klar gegeneinander abgegrenzt. Außerdem werden Numerische Verfahren der Linearen Algebra und der Analysis getrennt dargestellt, was den Studierenden den Zugang zur Numerik - ausgehend von den beiden Grundvorlesungen des Mathematik-Studiums - deutlich erleichtert. Das Buch ist daher sowohl für Studierende der Mathematik als auch der Physik, der Informatik oder der Ingenieurwissenschaften bestens geeignet.

Für die 2. Auflage wurde das Buch umfassend überarbeitet und erweitert. Unter anderem wurden Aspekte des maschinellen Lernens und neuronaler Netze aufgenommen, der Teil zu Krylow-Raum-Verfahren ausgebaut sowie angegebene Algorithmen durch konkrete Python-Codes ersetzt. Konkrete exemplarische Rechnungen werden nun auch mit diesen Python-Programmen durchgeführt.

Thomas Richter ist Professor für Numerische Mathematik an der Otto-von-Guericke-Universität Magdeburg. Sein Forschungsschwerpunkt ist die numerische Behandlung von komplexen Problemen der Strömungsmechanik.

Henry von Wahl ist Akademischer Rat an der Friedrich-Schiller-Universität Jena. Sein Forschungsschwerpunkt sind numerische Methoden für partielle Differentialgleichungen unter Verwendung fortgeschrittener Finite-Elemente-Methoden.

Thomas Wick ist Professor für Wissenschaftliches Rechnen an der Leibniz Universität Hannover. Sein Forschungsschwerpunkt ist die Numerik von instationären, nichtlinearen, gekoppelten partiellen Differentialgleichungen.

Einleitung.- Teil I Numerische Methoden der linearen Algebra. Grundlagen der linearen Algebra.- Lineare Gleichungssysteme.- Orthogonalisierungsverfahren und die QR-Zerlegung.- Berechnung von Eigenwerten.- Teil II Numerische Methoden der Analysis. Nullstellenbestimmung.- Numerische Iterationsverfahren für lineare Gleichungssysteme.- Interpolation und Approximation.- Verzeichnis der Exkurse.- Literaturverzeichnis.- Sachverzeichnis.

Erscheint lt. Verlag 11.1.2025
Zusatzinfo Illustrationen
Verlagsort Berlin
Sprache deutsch
Maße 168 x 240 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Numerische Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Approximation • Eigenwerte • Interpolation • Lineare Gleichungssysteme • Numerik • Numerische Iterationsverfahren • Numerische Mathematik • numerische Methoden
ISBN-10 3-662-69581-2 / 3662695812
ISBN-13 978-3-662-69581-4 / 9783662695814
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99