Lax-Phillips Scattering and Conservative Linear Systems -

Lax-Phillips Scattering and Conservative Linear Systems

A Cuntz-algebra Multidimensional Setting
Buch | Softcover
101 Seiten
2005
American Mathematical Society (Verlag)
978-0-8218-3768-9 (ISBN)
75,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
The evolution operator for the Lax-Phillips scattering system is an isometric representation of the Cuntz algebra, while the nonnegative time axis for the conservative, linear system is the free semigroup on $d$ letters. This title presents a multivariable setting for Lax-Phillips scattering and for conservative, discrete-time, linear systems.
We present a multivariable setting for Lax-Phillips scattering and for conservative, discrete-time, linear systems. The evolution operator for the Lax-Phillips scattering system is an isometric representation of the Cuntz algebra, while the nonnegative time axis for the conservative, linear system is the free semigroup on $d$ letters. The correspondence between scattering and system theory and the roles of the scattering function for the scattering system and the transfer function for the linear system are highlighted.Another issue addressed in this title is the extension of a given representation of the Cuntz-Toeplitz algebra (i.e., a row isometry) to a representation of the Cuntz algebra (i.e., a row unitary); the solution to this problem relies on an extension of the Szego factorization theorem for positive Toeplitz operators to the Cuntz-Toeplitz algebra setting. As an application, we obtain a complete set of unitary invariants (the characteristic function together with a choice of 'Haplitz' extension of the characteristic function defect) for a row-contraction on a Hilbert space.

Introduction Functional models for row-isometric/row-unitary operator tuples Cuntz scattering systems Unitary colligations Scattering, systems and dilation theory: the Cuntz-Toeplitz setting Bibliography.

Erscheint lt. Verlag 1.1.2006
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Gewicht 227 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-8218-3768-0 / 0821837680
ISBN-13 978-0-8218-3768-9 / 9780821837689
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich