Change Point Analysis for Time Series (eBook)

eBook Download: PDF
2024
XIII, 545 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-51609-2 (ISBN)

Lese- und Medienproben

Change Point Analysis for Time Series - Lajos Horváth, Gregory Rice
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume provides a comprehensive survey that covers various modern methods used for detecting and estimating change points in time series and their models. The book primarily focuses on asymptotic theory and practical applications of change point analysis. The methods discussed in the book go beyond the traditional change point methods for univariate and multivariate series. It also explores techniques for handling heteroscedastic series, high-dimensional series, and functional data. While the primary emphasis is on retrospective change point analysis, the book also presents sequential 'on-line' methods for detecting change points in real-time scenarios. Each chapter in the book includes multiple data examples that illustrate the practical application of the developed results. These examples cover diverse fields such as economics, finance, environmental studies, and health data analysis. To reinforce the understanding of the material, each chapter concludes with several exercises.Additionally, the book provides a discussion of background literature, allowing readers to explore further resources for in-depth knowledge on specific topics. Overall, 'Change Point Analysis for Time Series' offers a broad and informative overview of modern methods in change point analysis, making it a valuable resource for researchers, practitioners, and students interested in analyzing and modeling time series data.

Lajos Horváth is a faculty member in the Department of Mathematics at the University of Utah. He has coauthored over 300 peer reviewed papers and 5 books in the areas of statistics and probability on the topics of empirical process theory, functional data analysis, and change point analysis. He became a fellow at the Institute of Mathematical Statistics in 1990. He has been acknowledged as an ISI highly cited researcher. In addition to his research, Lajos has played significant editorial roles in several top research journals, including Statistics & Probability Letters, Journal of Statistical Planning and Inference and Journal of Time Series Econometrics.

Gregory Rice is a faculty member in the Department of Statistics and Actuarial Science at the University of Waterloo. He received his undergraduate degree in mathematics from Oregon State University, and a PhD in mathematics from the University of Utah. He has coauthored over 40 papers in theareas of functional data and time series analysis. His work has been supported by the Natural Science and Engineering Research Council of Canada Discovery Accelerator program.
Erscheint lt. Verlag 11.5.2024
Reihe/Serie Springer Series in Statistics
Zusatzinfo XIII, 545 p. 36 illus., 30 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Wirtschaft
Schlagworte ARMA • change point analysis • Data Segmentation • Dynamic Linear Models • functional data analysis • GARCH • Heteroscedastic Time Series • Panel Data • Sequential Monitoring • Time Series
ISBN-10 3-031-51609-5 / 3031516095
ISBN-13 978-3-031-51609-2 / 9783031516092
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich