Mastering NLP from Foundations to LLMs (eBook)

Apply advanced rule-based techniques to LLMs and solve real-world business problems using Python
eBook Download: EPUB
2024
340 Seiten
Packt Publishing (Verlag)
978-1-80461-638-3 (ISBN)

Lese- und Medienproben

Mastering NLP from Foundations to LLMs - Lior Gazit, Meysam Ghaffari
Systemvoraussetzungen
38,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Do you want to master Natural Language Processing (NLP) but don't know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you'll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You'll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You'll also explore general machine learning techniques and find out how they relate to NLP. Next, you'll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You'll get all of this and more along with complete Python code samples.
By the end of the book, the advanced topics of LLMs' theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You'll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.


Enhance your NLP proficiency with modern frameworks like LangChain, explore mathematical foundations and code samples, and gain expert insights into current and future trends Key FeaturesLearn how to build Python-driven solutions with a focus on NLP, LLMs, RAGs, and GPTMaster embedding techniques and machine learning principles for real-world applicationsUnderstand the mathematical foundations of NLP and deep learning designsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionDo you want to master Natural Language Processing (NLP) but don t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You ll also explore general machine learning techniques and find out how they relate to NLP. Next, you ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You ll get all of this and more along with complete Python code samples. By the end of the book, the advanced topics of LLMs theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.What you will learnMaster the mathematical foundations of machine learning and NLP Implement advanced techniques for preprocessing text data and analysis Design ML-NLP systems in PythonModel and classify text using traditional machine learning and deep learning methodsUnderstand the theory and design of LLMs and their implementation for various applications in AIExplore NLP insights, trends, and expert opinions on its future direction and potentialWho this book is forThis book is for deep learning and machine learning researchers, NLP practitioners, ML/NLP educators, and STEM students. Professionals working with text data as part of their projects will also find plenty of useful information in this book. Beginner-level familiarity with machine learning and a basic working knowledge of Python will help you get the best out of this book.
Erscheint lt. Verlag 26.4.2024
Vorwort Asha Saxena
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80461-638-9 / 1804616389
ISBN-13 978-1-80461-638-3 / 9781804616383
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99